期刊文章详细信息
文献类型:期刊文章
机构地区:[1]清华大学人文学院计算语言学研究室,北京100084
年 份:2004
卷 号:40
期 号:11
起止页码:75-77
语 种:中文
收录情况:AJ、BDHX、BDHX2000、CSA、CSA-PROQEUST、CSCD、CSCD2011_2012、IC、INSPEC、JST、RCCSE、ZGKJHX、核心刊
摘 要:该文意在设计并且实现一个针对英文文本的自动归类以及检索系统,重点在于提高分类方法的准确率。自动文本分类系统中,一般来说文本内容是以N维特征空间的形式存储的,所以特征提取的方法和准确率极大地影响到分类结果的正确率。传统方法是基于词形的,并不考察词语的意义,忽略了同一意义下词形的多样性、不确定性以及词义之间的关系,尤其是上下位关系。该文提出的方法,在向量空间模型(VSM)的基础上,以“概念”为基础,同时考虑词义的上位关系,使得训练过程中可以从词语中提炼出更加概括性的信息,从而达到提高分类精度的目的。
关 键 词:自动文本分类 概念层次 VSM WORDNET
分 类 号:TP391]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...