期刊文章详细信息
文献类型:期刊文章
机构地区:[1]空军工程大学工程学院飞机与发动机工程系,西安710038
基 金:国防预研资助基金(项目编号:98J19.3.2.JB3201); 空军重点型号工程课题
年 份:2003
卷 号:30
期 号:8
起止页码:124-125
语 种:中文
收录情况:BDHX、BDHX2000、CSA、CSCD、CSCD2011_2012、IC、JST、RCCSE、UPD、ZGKJHX、核心刊
摘 要:In this paper, we present a new support vector machines-least squares support vector machines (LS-SVMs). While standard SVMs solutions involve solving quadratic or linear programming problems, the least squaresversion of SVMs corresponds to solving a set of linear equations, due to equality instead of inequality constraints inthe problem formulation. In LS-SVMs, Mercer condition is still applicable. Hence several type of kernels such aspolynomial, RBF's and MLP's can be used. Here we use LS-SVMs to time series prediction compared to radial basisfunction neural networks. We consider a noisy (Gaussian and uniform noise)Mackey-Glass time series. The resultsshow that least squares support vector machines is excellent for time series prediction even with high noise.
关 键 词:机器学习 支持向量机 SVM 时间序列预测 模糊神经网络
分 类 号:TP181]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...