登录    注册    忘记密码

期刊文章详细信息

新型SVM对时间序列预测研究    

Prediction of Time Series Based on Least Squares Support Vector Machines

  

文献类型:期刊文章

作  者:朱家元[1] 段宝君[1] 张恒喜[1]

机构地区:[1]空军工程大学工程学院飞机与发动机工程系,西安710038

出  处:《计算机科学》

基  金:国防预研资助基金(项目编号:98J19.3.2.JB3201); 空军重点型号工程课题

年  份:2003

卷  号:30

期  号:8

起止页码:124-125

语  种:中文

收录情况:BDHX、BDHX2000、CSA、CSCD、CSCD2011_2012、IC、JST、RCCSE、UPD、ZGKJHX、核心刊

摘  要:In this paper, we present a new support vector machines-least squares support vector machines (LS-SVMs). While standard SVMs solutions involve solving quadratic or linear programming problems, the least squaresversion of SVMs corresponds to solving a set of linear equations, due to equality instead of inequality constraints inthe problem formulation. In LS-SVMs, Mercer condition is still applicable. Hence several type of kernels such aspolynomial, RBF's and MLP's can be used. Here we use LS-SVMs to time series prediction compared to radial basisfunction neural networks. We consider a noisy (Gaussian and uniform noise)Mackey-Glass time series. The resultsshow that least squares support vector machines is excellent for time series prediction even with high noise.

关 键 词:机器学习  支持向量机 SVM 时间序列预测 模糊神经网络

分 类 号:TP181]

参考文献:

正在载入数据...

二级参考文献:

正在载入数据...

耦合文献:

正在载入数据...

引证文献:

正在载入数据...

二级引证文献:

正在载入数据...

同被引文献:

正在载入数据...

版权所有©重庆科技学院 重庆维普资讯有限公司 渝B2-20050021-7
 渝公网安备 50019002500408号 违法和不良信息举报中心