期刊文章详细信息
文献类型:期刊文章
机构地区:[1]河北大学数学与计算机科学学院机器学习研究中心,河北保定071002
基 金:河北省自然科学基金(编号:698139)
年 份:2003
卷 号:39
期 号:29
起止页码:92-95
语 种:中文
收录情况:AJ、BDHX、BDHX2000、CSA、CSA-PROQEUST、CSCD、CSCD2011_2012、IC、INSPEC、JST、RCCSE、ZGKJHX、核心刊
摘 要:模糊决策树归纳是从具有模糊表示的示例中学习规则的一种重要方法,从符号值属性类分明的数据中提取规则可视为模糊决策树归纳的一种特殊情况。由于构建最优的模糊决策树是NP-hard,因此,针对启发式算法的研究是非常必要的。该文主要对两种启发式算法即FuzzyID3和Min-Ambiguity算法应用于符号值属性并且类分明情况所作的分析比较。通过实验与理论分析,发现FuzzyID3算法应用于符号值属性类分明的数据库时从训练准确度、测试准确度和树的规模等方面都要优于Min-Ambiguity算法。
关 键 词:模糊决策树 启发式算法 示例学习
分 类 号:O159[数学类]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...