期刊文章详细信息
文献类型:期刊文章
机构地区:[1]中国科学技术大学自动化系,安徽合肥230026 [2]中国科学院智能机械研究所,安徽合肥230031 [3]中国电力科学研究院,北京100085
年 份:2003
卷 号:23
期 号:6
起止页码:55-59
语 种:中文
收录情况:AJ、BDHX、BDHX2000、CSA、CSA-PROQEUST、CSCD、CSCD2011_2012、EI、IC、INSPEC、JST、RCCSE、SCOPUS、ZGKJHX、ZMATH、核心刊
摘 要:提出了一种基于支持向量机(SVM)理论的电力系统短期负荷预测方法。该方法采用结构风险最小化原则(SRM),与采用经验风险最小化原则(ERM)的传统神经网络方法相比,具有更好的泛化性能和精度,减少了对经验的依赖。SVM算法以统计学习理论作为其理论基础,它的训练等价于解决一个二次规划问题。为了提高负荷预测精度,文中在训练数据集中采用了负荷数据和温度数据。通过和多层BP神经网络进行比较的试验,结果证明了其在短期负荷预测中的有效性。
关 键 词:短期负荷预测 支持向量机 电力系统 神经网络 人工智能
分 类 号:TM715] TP18]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...