登录    注册    忘记密码

期刊文章详细信息

不完备信息系统下的变精度粗糙集模型及其知识约简算法    

Variable Precision Rough Set Model and a Knowledge Reduction Algorithm for Incomplete Information System

  

文献类型:期刊文章

作  者:张宏宇[1] 梁吉业[1]

机构地区:[1]山西大学计算机科学系,太原030006

出  处:《计算机科学》

基  金:国家自然科学基金(No.60275019);国家863项目(No.2001AA115460);山西省自然科学基金

年  份:2003

卷  号:30

期  号:4

起止页码:153-155

语  种:中文

收录情况:BDHX、BDHX2000、CSA、CSCD、CSCD2011_2012、IC、JST、RCCSE、UPD、ZGKJHX、核心刊

摘  要:Rough Set Theory, which has been found applicable and useful in many fields, is now a very effective method in data mining research. However, when the decision table is an incomplete one, with the original rough set theory proposed by Z. Pawlak, one can't get satisfactory results. In this paper an approach based on limited valued tolerance relation and majority inclusion relation is proposed. And furthermore a new attribute reduction method called extended discernable matrix is given. As this model is somewhat a combination of fuzzy means and majority inclusion relation, it is more effective than the previous models in practice.

关 键 词:变精度粗糙集模型 知识约简算法 粗糙集理论 不完备信息系统 人工神经网络

分 类 号:TP183]

参考文献:

正在载入数据...

二级参考文献:

正在载入数据...

耦合文献:

正在载入数据...

引证文献:

正在载入数据...

二级引证文献:

正在载入数据...

同被引文献:

正在载入数据...

版权所有©重庆科技学院 重庆维普资讯有限公司 渝B2-20050021-7
 渝公网安备 50019002500408号 违法和不良信息举报中心