期刊文章详细信息
文献类型:期刊文章
机构地区:[1]中国农业大学现代精细农业系统集成研究教育部重点实验室,北京100083 [2]河北建筑工程学院理学院,张家口075000
基 金:国家自然科学基金资助项目(31271619);北京市科技计划资助项目(D151100004215002)
年 份:2015
卷 号:46
期 号:S1
起止页码:141-146
语 种:中文
收录情况:BDHX、BDHX2014、CAB、CAS、CSA、CSA-PROQEUST、CSCD、CSCD2015_2016、EI、IC、JST、RCCSE、SCOPUS、ZGKJHX、核心刊
摘 要:提出了一种机器视觉技术结合BP神经网络快速鉴别结球甘蓝叶球形状的方法。运用图像处理技术,提取结球甘蓝的高度、宽度、长轴、面积4个绝对形状参数,在此基础上定义了高宽比、圆形度、矩形度、椭形度、球顶形状指数等5个相对形状参数。分别以4个绝对参数、5个相对参数以及上述9个参数作为网络输入,建立BP神经网络叶球识别模型。测试结果表明,以绝对参数作为输入的BP神经网络正确识别率为62.5%,相对参数作为输入的BP神经网络以及相对参数和绝对参数9个参数作为输入的BP神经网络正确识别率均达100%,以相对参数作为网络输入的预测模型优于以绝对参数作为网络输入的预测模型,相对参数和相对参数结合绝对参数作为输入构建的BP神经网络识别模型均具有良好的分类和鉴别能力。
关 键 词:结球甘蓝 叶球形状 图像处理 BP神经网络 模式识别
分 类 号:TP391.41] S635.1[计算机类]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...