期刊文章详细信息
基于迁移学习的类别级物体识别与检测研究与进展 ( EI收录)
Status and Development of Transfer Learning Based Category-Level Object Recognition and Detection
文献类型:期刊文章
ZHANG Xue-Song;ZHUANG Yan;YAN Fei;WANG Wei(School of Control Science and Engineering,Dalian Univer-sity of Technology,Dalian116024;Software TechnologyInstitute,Dalian Jiaotong University,Dalian116028)
机构地区:[1]大连理工大学控制科学与工程学院,大连116024 [2]大连交通大学软件学院,大连116028
基 金:国家自然科学基金(61503056,U1508208);辽宁省教育厅基本科研项目(JDL2017017)资助~~
年 份:2019
卷 号:45
期 号:7
起止页码:1224-1243
语 种:中文
收录情况:BDHX、BDHX2017、CSCD、CSCD2019_2020、EI、IC、JST、MR、PUBMED、RCCSE、SCOPUS、ZGKJHX、ZMATH、核心刊
摘 要:类别级物体识别与检测属于计算机视觉领域的一个基础性问题,主要研究在图像或视频流中识别和定位出其中感兴趣的物体.在基于小规模数据集的类别级物体识别与检测应用中,模型过拟合、类不平衡和跨领域时特征分布变化等关键问题与挑战交织在一起.本文介绍了迁移学习理论的研究现状,对迁移学习理论解决基于小规模数据集的物体识别与检测中遇到的主要问题的研究思路和前沿技术进行了着重论述和分析.最后对该领域的研究重点和技术发展趋势进行了探讨.
关 键 词:迁移学习 物体识别 物体检测 小规模数据集 类不平衡数据集
分 类 号:TP391.41]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...