期刊文章详细信息
文献类型:期刊文章
机构地区:[1]河南师范大学计算机科学系,河南新乡453002 [2]西安科技学院计算机科学系,西安710054
年 份:2003
卷 号:39
期 号:13
起止页码:109-110
语 种:中文
收录情况:AJ、BDHX、BDHX2000、CSA、CSA-PROQEUST、CSCD、CSCD2011_2012、IC、INSPEC、JST、RCCSE、ZGKJHX、核心刊
摘 要:粒子群优化(PSO)是一类有效的随机全局优化技术。它利用一个粒子群搜索解空间,每个粒子表示一个被优化问题的解,通过粒子间的相互作用发现复杂搜索空间中的最优区域。提出一类新颖的PSO算法,该算法在基本PSO算法的粒子位置更新公式中增加了一个积分控制项。积分控制项根据每个粒子的适应值决定粒子位置的变化,改善了PSO算法摆脱局部极小点的能力。另外,该算法增加了限制搜索空间范围的机制,这对某些函数优化问题是必需的。用5个基准函数做的对比实验结果显示,该算法优于基本PSO算法以及自适应修改惯性因子的PSO算法。
关 键 词:粒子群 优化 演化计算 群智能
分 类 号:TP18] TP301.6]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...