期刊文章详细信息
文献类型:期刊文章
机构地区:[1]华侨大学计算机科学系,泉州362011
年 份:2003
卷 号:29
期 号:5
起止页码:192-194
语 种:中文
收录情况:AJ、BDHX、BDHX2000、CAS、CSA、CSA-PROQEUST、CSCD、CSCD2011_2012、IC、INSPEC、JST、RCCSE、SCOPUS、UPD、ZGKJHX、核心刊
摘 要:支持向量机(SVM)是由Vapnik等人提出的一类新型机器学习方法。该文在字符特征提取基础上,应用SVM算法对车牌中的英文字符进行识别,克服了一般的SVM算法识别数字位图时缺乏对相邻空间像素相关性考虑的不足,在满足实时性的条件下获得高识别率。通过与基于字符特征的BP网络识别方案相比较表明,该方案性能远优于神经网络的性能,可很好地解决神经网络方法中无法避免的局部极值问题。实验讨论了在应用SVM算法对字符进行识别时,核函数K和惩罚因子C的选择对识别率的影响问题。
关 键 词:支持向量机 车牌字符识别 特征提取 BP网络 核函数 惩罚因子 计算机视觉 模式识别
分 类 号:TP391.43]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...