登录    注册    忘记密码

期刊文章详细信息

波动预测建模与尾部风险测量方法    

Methodology of Volatility Forecasting Modelling and Tail Risk Measurement

  

文献类型:期刊文章

作  者:陈声利[1,2] 李一军[3] 关涛[3]

CHEN Shengli;LI Yijun;GUAN Tao(Guanghua School of Management,Peking University,Beijing 100871,China;Harvest Fund Management Co.Ltd.,Beijing 100005,China;School of Management,Harbin Institute of Technology,Harbin 150001,China)

机构地区:[1]北京大学光华管理学院,北京100871 [2]嘉实基金管理有限公司,北京100005 [3]哈尔滨工业大学管理学院,哈尔滨150001

出  处:《管理科学》

基  金:中国博士后科学基金一等资助项目(2018M640367)~~

年  份:2018

卷  号:31

期  号:6

起止页码:17-32

语  种:中文

收录情况:BDHX、BDHX2017、CSSCI、CSSCI2017_2018、JST、NSSD、RCCSE、RWSKHX、SKJJZZ、ZGKJHX、核心刊

摘  要:作为中国资本市场的对冲工具,股指期货在2015年经历了一轮极端牛熊市。在股指异常波动阴影下,研究股指期货尾部风险的测量方法,对风险管理与资产配置具有理论意义和实践意义。传统风险测量方法通常利用低频波动率构建尾部风险VaR和ES估计量,但高频波动率比低频波动率蕴含更多信息且计算效率更高,利用高频波动率建立高效的尾部风险测量方法成为研究趋势。基于条件极值理论和新型高频波动率,构建RV-EVT框架的股指期货尾部风险测量方法。阐述已实现波动率衍生的跳跃、好坏波动和符号跳跃理论;为提高波动率估计精度,利用已实现核修正CPR跳跃检验、好坏波动和符号跳跃;考虑跳跃、好坏波动和符号跳跃建立4组对数形式的HAR类波动预测模型。在极值理论框架中嵌入HAR类模型预测波动率,构建两步法的RV-EVT尾部风险测量方法 ;根据样本外滚动预测评估股指期货尾部风险测量水平,采用无条件覆盖和自枚举检验对VaR和ES进行回测分析。研究结果表明,波动率的样本外滚动预测显示,HAR波动预测框架下好坏波动分解优于连续跳跃波动分解,好坏波动衍生出的正负符号跳跃具有极为突出的波动预测能力;回测分析检验结果显著,尾部超出数接近理论预期,表明RV-EVT尾部风险测量方法有效; HAR-RV-RS和HAR-RV-SJd模型的尾部风险测量表现最佳; ES模型比VaR模型具有更优的尾部风险测量水平,特别是在高风险状态下ES模型能弥补VaR模型失控的缺陷;通过量化交易资金管理研究,揭示尾部风险测量方法的应用价值。建立了高频波动率与风险管理的桥梁,为金融资产尾部风险度量提供了有效方法,对资产配置和风险控制具有借鉴意义。

关 键 词:波动预测  尾部风险  好坏波动  极值理论 量化交易  

分 类 号:F832.51[金融学类]

参考文献:

正在载入数据...

二级参考文献:

正在载入数据...

耦合文献:

正在载入数据...

引证文献:

正在载入数据...

二级引证文献:

正在载入数据...

同被引文献:

正在载入数据...

版权所有©重庆科技学院 重庆维普资讯有限公司 渝B2-20050021-7
 渝公网安备 50019002500408号 违法和不良信息举报中心