期刊文章详细信息
文献类型:期刊文章
机构地区:[1]中国科学技术大学自动化系,安徽合肥230026 [2]中国科学院合肥智能机械研究所,安徽合肥230031
年 份:2003
卷 号:18
期 号:1
起止页码:89-91
语 种:中文
收录情况:AJ、BDHX、BDHX2000、CSA、CSA-PROQEUST、CSCD、CSCD2011_2012、EI、IC、INSPEC、JST、MR、RCCSE、SCOPUS、ZGKJHX、ZMATH、核心刊
摘 要:支持向量机 (SVM)回归理论与神经网络等非线性回归理论相比具有许多独特的优点。讨论了建模中 SVM核函数、损失函数的选取和容量控制等问题 ,并用实验加以验证。将 SVM回归动态建模理论应用于非线性、时变、大时延温室环境温度变化的建模和预测 ,模型简单 ,预测效果好。
关 键 词:支持向量机 在线建模 回归理论 神经网络
分 类 号:TP183]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...