期刊文章详细信息
文献类型:期刊文章
机构地区:[1]北京大学深圳研究生院物联网智能感知技术工程实验室,广东深圳518055 [2]华北电力大学控制与计算机工程学院,河北保定071000
年 份:2015
卷 号:43
期 号:S1
起止页码:381-384 388
语 种:中文
收录情况:AJ、BDHX、BDHX2014、CAS、CSA、CSA-PROQEUST、CSCD、CSCD2015_2016、EI、IC、INSPEC、JST、MR、RCCSE、SCOPUS、ZGKJHX、ZMATH、核心刊
摘 要:提出一种基于MFCC和共振峰频率特征的汉语普通话口音识别方法.该方法首先提取Mel频率倒谱系数(MFCC)和共振峰频率特征作为混合高斯模型(GMM)的输入,然后采用期望最大化(EM)算法训练模型,对两种特征分别建模,最后采用基于最大似然准则(ML)的信息融合策略进行口音判别.实验数据库为7个地区的语音数据.经过交叉验证,该方法对于中国典型地区普通话口音的识别率达到85.61%,比单一使用MFCC特征或共振峰频率特征分别提高了6.62%和32.90%.
关 键 词:口音识别 汉语普通话 MEL频率倒谱系数 共振峰频率 信息融合 加权判别
分 类 号:TN912.3]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...