期刊文章详细信息
2014~2017北京市气象条件和人为排放变化对空气质量改善的贡献评估 ( EI收录)
Contribution Assessment of Meteorology Conditions and Emission Change for Air Quality Improvement in Beijing During 2014-2017
文献类型:期刊文章
YIN Xiao-mei;LI Zi-ming;XIONG Ya-jun;QIAO Lin;QIU Yu-lu;SUN Zhao-bin;KOU Xing-xia(Institute of Urban Meteorology,Chinese Meteorological Administration,Beijing 100089,China;Environmental Meteorology Forecast Center of Beijing-Tianjin-Hebei,Beijing 100089,China;Key Laboratory of Atmospheric Chemistry,China Meteorological Administration,Beijing 100081,China)
机构地区:[1]中国气象局北京城市气象研究所,北京100089 [2]京津冀环境气象预报预警中心,北京100089 [3]中国气象局大气化学重点开放实验室,北京100081
基 金:北京市气象局科技项目(BMBKJ201702008);中国气象局预报员专项(CMAYBY2018-003);中国气象局大气化学重点开放实验室开放课题项目(2017b04);国家重点研发计划项目(2016YFC0202100)
年 份:2019
卷 号:40
期 号:3
起止页码:1011-1023
语 种:中文
收录情况:AJ、BDHX、BDHX2017、BIOSISPREVIEWS、CAS、CSA、CSA-PROQEUST、CSCD、CSCD2019_2020、EI、EMBASE、IC、JST、PROQUEST、PUBMED、RCCSE、SCOPUS、WOS、ZGKJHX、ZR、核心刊
摘 要:2014~2017年北京地区霾日数和污染日数逐年减少,PM_(2.5)、PM_(10)、SO_2和NO_2年平均质量浓度下降,污染程度缓解,采暖期中的11~12月尤为明显.针对空气质量的显著改善,从气象条件的改善和减排措施两方面进行探讨分析,并结合数值模式和大数据挖掘技术实现气象和排放对大气污染贡献率的定量化研究.结果表明,2017年与过去3 a相比,平均风速增加7. 9%,≥3. 4 m·s^(-1)的风速频次最高(10. 6%),≥70%湿度日占比最小(25. 1%);其中,采暖期与过去3 a同期相比,小风日数减少8. 6%、大气环境容量指数和通风指数平均增加约11%,边界层高度以3. 2%·a^(-1)的速率升高,尤其11~12月各要素改善更显著,且该时段内2014年各因子变化与2017年相似.非采暖期(4~10月)累积降水量558. 3 mm,仅次于2016年,有利于污染物的清除和湿沉降.利用WRF-CHEM对霾和污染频发的12月进行模拟发现,气象要素的改变导致2017年12月北京PM_(2.5)质量浓度较2014~2016年同期分别降低5%、38%和25%.因缺少政府实际施行的减排方案,无法利用WRF-CHEM量化气象和减排的具体贡献率,因此借助大数据挖掘算法,基于K近邻算法(KNN)和支持向量机(SVM)模型对气象和减排对空气质量改善的贡献进行评估,结果显示2017年减少的霾日和重污染日,65. 0%归因于减排的贡献,35. 0%归因为气象条件的改善.可见,气象与生态环境部门应继续加强数据开放共享,科学开展气象条件预报与减排评估.
关 键 词:空气污染 气象条件 排放 K近邻算法(KNN) 支持向量机(SVM) 贡献率
分 类 号:X51] X16
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...