登录    注册    忘记密码

期刊文章详细信息

基于集成替代模型和遗传算法的地下水污染源信息识别    

Identification of groundwater contaminant source information based on ensemble surrogate model and genetic algorithm

  

文献类型:期刊文章

作  者:刘蒙[1] 骆乾坤[1] 安济民[2] 赵梦[1] 钱家忠[1]

LIU Meng;LUO Qiankun;AN Jimin;ZHAO Meng;QIAN Jiazhong(School of Resources and Environmental Engineering,Hefei University of Technology,Hefei 230009,China;Unit 93263 of PLA,Jinzhou 121000,China)

机构地区:[1]合肥工业大学资源与环境工程学院,安徽合肥230009 [2]中国人民解放军93263部队,辽宁锦州121000

出  处:《合肥工业大学学报(自然科学版)》

基  金:国家自然科学基金资助项目(41831289);安徽省自然科学基金资助项目(1708085QD82);中央高校基本科研业务费专项资金资助项目(JZ2018HGTB0251)

年  份:2024

卷  号:47

期  号:6

起止页码:731-738

语  种:中文

收录情况:AJ、BDHX、BDHX2023、CAS、JST、MR、RCCSE、ZGKJHX、ZMATH、核心刊

摘  要:准确识别污染源信息是高效治理和修复地下水污染的前提。为解决使用传统模拟优化方法识别污染源信息过程中产生的严重计算负担问题,文章首先建立BP神经网络(back propagation neural network,BPNN)模型、支持向量回归(support vector regression,SVR)模型和核极限学习机(kernel extreme learning machine,KELM)模型代替传统模拟优化方法中的地下水水流和溶质运移模拟模型。然后,使用简单平均法和遗传算法(genetic algorithm,GA)计算权重值并建立集成替代模型进一步提高模型精度。最后,将表现最优的基于遗传算法建立的集成替代模型嵌入识别污染源信息的优化模型中。算例结果分析表明,嵌入基于遗传算法建立的集成替代模型的优化模型相较于传统模拟优化模型计算时间由11 d大幅度缩短至39 min,且求解所得的污染源信息参数接近真实值,可用于解决污染源信息识别问题。

关 键 词:地下水污染 污染源识别 替代模型  遗传算法(GA)  

分 类 号:X523]

参考文献:

正在载入数据...

二级参考文献:

正在载入数据...

耦合文献:

正在载入数据...

引证文献:

正在载入数据...

二级引证文献:

正在载入数据...

同被引文献:

正在载入数据...

版权所有©重庆科技学院 重庆维普资讯有限公司 渝B2-20050021-7
 渝公网安备 50019002500408号 违法和不良信息举报中心