期刊文章详细信息
基于FIA*-APF算法的蟹塘投饵船动态路径规划 ( EI收录)
Dynamic path planning for feeding boat in crab pond using FIA*-APF algorithm
文献类型:期刊文章
SUN Yueping;FANG Zheng;YUAN Bikang;SUN Jie;MENG Xiangwen;WANG Yantong;ZHAO De’an(College of Electrical and Information Engineering,Jiangsu University,Zhenjiang 212013,China;Changzhou Dongfeng Agricultural Machinery Group Co.,LTD.,Changzhou 213200,China;Key Laboratory of Agricultural Measurement and Control Technology and Equipment for Machinery Industry,Jiangsu University,Zhenjiang 212013,China)
机构地区:[1]江苏大学电气信息工程学院,镇江212013 [2]常州东风农机集团有限公司,常州213200 [3]江苏大学机械工业设施农业测控技术与装备重点实验室,镇江212013
基 金:国家自然科学基金项目(62173162);江苏省现代农机装备与技术示范推广项目(NJ2022-28);江苏省高校优势学科建设项目(PAPD)。
年 份:2024
卷 号:40
期 号:9
起止页码:137-145
语 种:中文
收录情况:AJ、BDHX、BDHX2023、CAB、CAS、CSCD、CSCD2023_2024、EAPJ、EI、JST、RCCSE、SCOPUS、ZGKJHX、核心刊
摘 要:为了提高无人投饵船在含障碍物河蟹养殖池塘自主巡航的作业效率和安全性,该研究提出基于改进A*算法与人工势场法相融合(fusion of improved A*and artificial potential field,FIA*-APF)的蟹塘投饵船动态路径规划算法。首先引入动态加权因子优化A*算法评价函数;其次加入转折惩罚函数并删除冗余点,接着利用B样条曲线对全局路径进行平滑处理;最后将改进A*算法得到的全局路径作为改进人工势场法中的引力路径,生成投饵船自主巡航高效路径。根据养殖池塘创建静态和动态2种仿真环境,分别对传统人工势场法(traditional artificial potential field,TAPF)、基于A*和人工势场法的融合算法(the A*and artificial potential field,TA*-APF)和FIA*-APF算法的性能进行20次测试。仿真试验结果表明:2种环境下,FIA*-APF算法的平均规划时间是TAPF算法的17.23%,是TA*-APF算法的51.96%,平均指令节点数量比TAPF算法减少50.64%,比TA*-APF算法减少65.03%,平均路径长度比TA*-APF算法减少2.82%。蟹塘试验结果表明:FIA*-APF算法的规划时间为TAPF算法的38.16%,为TA*-APF的62.42%,路径长度比TAPF算法减少29.13%,比TA*-APF减少10.15%;另外,TAPF和TA*-APF算法规划路径上大于60°的转角分别是FIA*-APF算法的3.28和2.62倍,大于100°的转角分别是FIA*-APF算法的3.73和1.67倍,该研究算法规划的路径更高效平滑。研究结果可为无人投饵船自主导航提供参考。
关 键 词:无人投饵船 算法 导航 路径规划 A*算法 人工势场法 动态避障
分 类 号:S969.3]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...