期刊文章详细信息
文献类型:期刊文章
LI Liangliang;ZHANG Zhuhong;ZHANG Yongdan(Guizhou Provincial Characteristic Key Laboratory of System Optimization and Scientific Computation,College of Big Data and Information Engineering,Guizhou University,Guiyang 550025,China)
机构地区:[1]贵州大学大数据与信息工程学院,贵州省系统优化与科学计算特色重点实验室,贵阳550025
基 金:国家自然科学基金(62063002)。
年 份:2024
卷 号:50
期 号:2
起止页码:623-633
语 种:中文
收录情况:BDHX、BDHX2023、CAS、CSCD、CSCD2023_2024、EI、INSPEC、JST、RCCSE、SCOPUS、ZGKJHX、核心刊
摘 要:鉴于反向传播(BP)神经网络存在灵敏度高但收敛速度慢,以及已有傅里叶神经网络不具备多输入数据特征提取能力,借助多个傅里叶神经网络构建能接收多维数据的堆叠神经网络,进而将其与多层感知器融合,获得基于梯度下降的多输入傅里叶神经网络。结合此神经网络获取全局最优参数值难的因素,通过在麻雀搜索算法中引入Cat混沌映射、动态种群规模调节机制及参数自适应调节方案,提出改进型麻雀搜索算法,并将其应用于多输入傅里叶神经网络的参数优化及高维函数优化问题的求解。理论分析可得,所提算法的计算复杂度主要由种群规模和优化问题的维度决定。比较性的数值实验表明,所获神经网络提取多源数据特征的能力和泛化能力强,同时所提算法处理高维优化问题具有明显优势且收敛速度快。
关 键 词:傅里叶神经网络 多层感知器 麻雀搜索 高维函数优化 多属性分类
分 类 号:TP301.6]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...