登录    注册    忘记密码

期刊文章详细信息

基于梯度图像融合的接触网绝缘子故障检测    

Catenary Insulator Fault Detection Based on Gradient Image Fusion

  

文献类型:期刊文章

作  者:石杰[1] 张靖[2] 钟汉华[1]

SHI Jie;ZHANG Jing;ZHONG Hanhua(School of Electrical and Automation Engineering,East China Jiaotong University,Nanchang 330000,China;School of Physics and Information Engineering of Zhaotong University,Zhaotong 657000,China)

机构地区:[1]华东交通大学电气与自动化工程学院,江西南昌330000 [2]昭通学院物理与信息工程学院,云南昭通657000

出  处:《红外技术》

基  金:江西省教育厅青年基金项目(GJJ2200659);国家自然科学基金(52267015)。

年  份:2023

卷  号:45

期  号:10

起止页码:1106-1117

语  种:中文

收录情况:BDHX、BDHX2020、CSCD、CSCD2023_2024、JST、SCOPUS、ZGKJHX、核心刊

摘  要:针对单一红外图像或可见光图像不能够实现全天候检测的问题,提出了一种梯度图像融合模型将红外和可见光图像进行融合。先采用加速稳健特征算法(speeded-up robust features,SURF)将两幅图像的特征点进行匹配。接着采样剪切波变换(non-subsampled shearlet transform,NSST)算法将待融合图像进行分解,形成具有高频分量信息和低频分量信息的图,再分别对绝缘子的高频分量图和低频分量图进行融合,实现局部融合。利用NSST的逆变换对高频分量图和低频分量图进行逆变换,得到最终融合图,实现全局融合。对融合图像进行质量评价。采用最小二乘法直线拟合算法在二值图像的基础上来实现绝缘子的自爆检测;采用像素积分投影法来检测绝缘子片裂纹情况;采用颜色特征来检测绝缘子表面是否存在污秽的情况。通过实验对比单张图像和融合图像的检测结果的准确率。实验结果表明,采用基于融合图像的绝缘子自爆、绝缘子片裂纹、绝缘子表面污秽3个故障的识别率分别达到了95%、91%、90%,均高于单一的红外图像或可见光图像的识别率。

关 键 词:接触网绝缘子故障  图像融合 局部融合  全局融合  图像质量评价

分 类 号:TM854] TP391.4]

参考文献:

正在载入数据...

二级参考文献:

正在载入数据...

耦合文献:

正在载入数据...

引证文献:

正在载入数据...

二级引证文献:

正在载入数据...

同被引文献:

正在载入数据...

版权所有©重庆科技学院 重庆维普资讯有限公司 渝B2-20050021-7
 渝公网安备 50019002500408号 违法和不良信息举报中心