登录    注册    忘记密码

期刊文章详细信息

融合注意力机制的YOLOv7遥感小目标检测算法研究    

Research on YOLOv7 Remote Sensing Small Target Detection Algorithm Integrating Attention Mechanism

  

文献类型:期刊文章

作  者:余俊宇[1] 刘孙俊[1] 许桃[1]

YU Junyu;LIU Sunjun;XU Tao(School of Software Engineering,Chengdu University of Information Technology,Chengdu 610225,China)

机构地区:[1]成都信息工程大学软件工程学院,成都610225

出  处:《计算机工程与应用》

年  份:2023

卷  号:59

期  号:20

起止页码:167-175

语  种:中文

收录情况:AJ、BDHX、BDHX2020、CSCD、CSCD_E2023_2024、IC、JST、RCCSE、ZGKJHX、核心刊

摘  要:针对遥感目标检测而言,因其主要是分布密集的小目标从而导致在检测过程中存在漏检误检的情况,其次在检测中还会受目标尺度差异显著和检测背景复杂带来的影响,因此提出一种改进YOLOv7的目标检测方法。通过结合全局语义信息与局部语义信息的思想,利用集中特征金字塔CFP(centralized feature pyramid)解决遥感图像因目标分布密集以及检测背景复杂导致检测效率较低的问题;针对遥感图像中的小目标分布不定并且其特征表现能力不足从而在检测过程中容易存在漏检、误检的现象,因此,通过引入混合注意力模块ACmix加强网络对于小目标检测的敏感度,以提升对小目标的检测精度;使用WIOU损失函数来优化原网络中的损失函数,提升网络对检测目标的定位能力。在公开的遥感数据中进行实验对比,改进后的网络对于三个检测目标飞机、油罐、操场的mAP分别提升了0.068、0.061、0.098,实验结果表明,在检测背景复杂,检测目标密集分布的情况下,改进的YOLOv7网络性能有所提升。

关 键 词:遥感图像 目标检测 小目标  损失函数 YOLOv7  

分 类 号:TP391]

参考文献:

正在载入数据...

二级参考文献:

正在载入数据...

耦合文献:

正在载入数据...

引证文献:

正在载入数据...

二级引证文献:

正在载入数据...

同被引文献:

正在载入数据...

版权所有©重庆科技学院 重庆维普资讯有限公司 渝B2-20050021-7
 渝公网安备 50019002500408号 违法和不良信息举报中心