期刊文章详细信息
基于多新息辨识算法的锂离子电池等效电路模型参数辨识
Identification of lithium-ion battery equivalent circuit model parameters based on the multi-innovation identification algorithm
文献类型:期刊文章
LIN Peng;LIU Tao;JIN Peng;WANG Zhenpo;WANG Shengjie;YUAN Hongsheng;MA Ze;DI Yu(Beijing Mechanical Equipment Institut,Beijing 100854,China;Vehicle Research Institutee,Beijing 100024,China;National Engineering Research Center of Electric Vehicles,School of Mechatronical Engineering,Beijing Institute of Technology,Beijing 100081,China;School of Electrical and Control Engineering,North China University of Technology;Collaborative Innovation Center of Electric Vehicle in Beijing,Beijing 100144,China)
机构地区:[1]北京机械设备研究所,北京100854 [2]中国人民解放军63936部队,北京100024 [3]北京理工大学机械与车辆学院,电动车辆国家工程研究中心,北京100081 [4]北方工业大学电气与控制工程学院 [5]北京电动车辆协同创新中心,北京100144
年 份:2023
卷 号:12
期 号:10
起止页码:3155-3169
语 种:中文
收录情况:BDHX、BDHX2020、CAS、CSCD、CSCD2023_2024、JST、RCCSE、ZGKJHX、核心刊
摘 要:实时、准确地获得电池模型的参数可提高电池状态估计的精度。常用的系统辨识算法和智能优化算法不仅实时性差,而且辨识精度低。为了解决等效电路模型的参数辨识及提高等效电路模型参数的辨识精度,本文通过直接离散的方法建立了能够同时辨识二阶RC(resistance-capacitance)等效电路模型和PNGV(partnership for a new generation of vehicles)模型参数的差分方程。基于多新息算法辨识理论,提出了带遗忘因子的多新息辅助模型扩展递推最小二乘(FMIAELS)算法。FMIAELS算法只需利用电池的电流及端电压即可实现等效电路模型参数的实时、精确辨识。实验验证结果表明,在不同温度、工况和老化程度下,FMIAELS算法可精确地辨识电池的模型参数,误差约为常用的系统辨识算法和智能优化算法的1/3。FMIAELS算法也能实现开路电压(OCV)的精确辨识,在不同脉冲下辨识的OCV的精度也明显优于常用的系统辨识算法和智能优化算法,其平均误差仅有0.22%。
关 键 词:等效电路模型 模型参数辨识 多新息辨识算法 锂离子电池
分 类 号:TM912.8]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...