期刊文章详细信息
基于近红外光谱和水分校正算法的造纸木片基本密度预测 ( EI收录)
Prediction of Basic Density of Wood Chips Using Near-Infrared Spectroscopy and Moisture Content Correction Algorithm
文献类型:期刊文章
LIANG Long;WU Ting;SHEN Kui-zhong;XIONG Zhi-xin;XU Feng;FANG Gui-gan(Institute of Chemical Industry of Forest Products,Chinese Academy of Forestry、Key Lab of Biomass Energy and Material,Jiangsu Province、Co-Innovation Center of Efficient Processing and Utilization of Forest Resources,Jiangsu Province、Key Lab of Chemical Engineering of Forest Products,National Forestry and Grassland Administration、National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass,Nanjing 210042,China;College of Materials Science and Technology,Beijing Forestry University,Beijing Key Laboratory of Lignocellulosic Chemistry,Beijing 100083,China;Institute of Ecological Conservation and Restoration,Chinese Academy of Forestry,Beijing 100091,China;Key Laboratory of Chemistry and Engineering of Forest Products,State Ethnic Affairs Commission,Guangxi Key Laboratory of Chemistry and Engineering of Forest Products,Guangxi University for Nationalities,Nanning 530006,China;College of Light Industry and Food Engineering,Nanjing Forestry University,Nanjing 210037,China)
机构地区:[1]中国林业科学研究院林产化学工业研究所、江苏省生物质能源与材料重点实验室、江苏省林业资源高效加工利用协同创新中心、国家林业和草原局林产化学工程重点实验室、林木生物质低碳高效利用国家工程研究中心,江苏南京210042 [2]北京林业大学材料科学与技术学院,林木生物质化学北京市重点实验室,北京100083 [3]中国林业科学研究院生态保护与修复研究所,北京100091 [4]广西民族大学林产化学与工程国家民委重点实验室,广西林产化学与工程重点实验室,广西南宁530006 [5]南京林业大学轻工与食品学院,江苏南京210037
基 金:国家自然科学基金重大项目(31890771);中国林业科学院林业新技术所基本科研业务费专项资金项目(CAFYBB2019SY039);林产化学与工程国家民委重点实验室暨广西林产化学与工程重点实验室开放课题重点项目(GXFK2205)资助。
年 份:2023
卷 号:43
期 号:8
起止页码:2476-2482
语 种:中文
收录情况:AJ、BDHX、BDHX2020、CAS、CSCD、CSCD2023_2024、EI、IC、JST、PUBMED、RCCSE、SCIE、SCOPUS、WOS、ZGKJHX、核心刊
摘 要:基本密度是评估木材制浆造纸性能的重要指标。采用近红外光谱技术检测造纸木片基本密度,实时掌握原料材性变化,能够为制定和优化制浆生产工艺提供基础理论数据。但在实际生产中,原料来源的复杂性造成木片水分含量波动较大,光谱中的水分干扰信息严重影响模型预测效果,成为制约近红外技术实际应用的主要因素。以杨木片为研究对象,通过对木片失水过程的近红外光谱动态监测,结合主成分分析明确光谱中水分吸收信息的特征响应,揭示了木片水分中结合水和自由水的变化规律。分别采用不同水分条件下的木片光谱建立偏最小二乘回归(PLS)模型预测木片基本密度,通过对比分析模型预测性能,探究木片水分变化对近红外预测木片密度的影响,并采用外部参数正交化算法(EPO)消除光谱中水分的干扰,提高模型对水分变化的抗干扰能力。研究结果表明,基于饱水木片光谱的模型具有最好的预测精度,模型的建立主要依靠近红外光谱对木片纤维结构特征信息的获取。而光谱中大量的水分吸收信息对建模是冗余无用的,并且会导致模型对样品水分高度敏感,当测试集水分含量变化时,模型预测出现严重偏差。通过EPO算法对木片失水过程动态光谱的解析,提取水分校正因子,能够有效消除水分变化引起的光谱差异。基于水分校正的基本密度预测模型对不同水分条件下的测试集均表现出稳定的预测性能,均方根误差、决定系数和预测相对标准偏差分别为12.23 kg·m^(-3)、0.8834和2.93。该研究将EPO算法引入对木材材性的近红外光谱分析,构建了抗水分干扰的稳健型基本密度预测模型,较好地解决了水分含量波动对原料材性快速检测的影响,为近红外光谱技术在制浆造纸领域的推广应用提供了依据。
关 键 词:造纸木片 近红外光谱 基本密度 外部参数正交化算法
分 类 号:O657.3]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...