期刊文章详细信息
文献类型:期刊文章
Wang Rongrong;Jiang Zhongyun(College of Information,Shanghai Ocean University,Shanghai 201306,China;College of Information Technology,Shanghai Jian Qiao University,Shanghai 201306,China)
机构地区:[1]上海海洋大学信息学院,上海201306 [2]上海建桥学院信息技术学院,上海201306
基 金:上海市属高校应用型本科试点专业建设项目(Z32004-17084);上海市教育委员会一流本科专业建设专项项目(JYLB202002)。
年 份:2023
卷 号:60
期 号:2
起止页码:229-238
语 种:中文
收录情况:BDHX、BDHX2020、CSCD、CSCD2023_2024、IC、JST、RCCSE、SCOPUS、WOS、ZGKJHX、核心刊
摘 要:针对常规目标检测器检测水下目标时存在特征提取困难、目标漏检等问题,提出一种改进CenterNet的水下目标检测算法。首先,使用高分辨率人体姿态估计网络HRNet代替CenterNet模型中的Hourglass-104骨干网络,降低模型参数量,提升网络推理速度;其次,引入瓶颈注意力模块,在空间维度及通道维度进行特征增强,使网络关注重要目标特征信息,提高检测精度;最后,构建特征融合模块,融合网络内部丰富的语义信息和空间位置信息,并利用感受野模块增强融合后的特征,提高网络多尺度目标检测能力。在URPU水下目标检测数据集上进行实验,与CenterNet相比,所提算法的检测精度可达77.4%,提升1.5个百分点,检测速度为7 frame/s,提升35.6%,参数量为30.4 MB,压缩84.1%,同时与其他主流目标检测算法相比具有更高的检测精度,在水下目标检测任务上更具优势。
关 键 词:机器视觉 水下目标检测 CenterNet 高分辨率网络 注意力机制 特征融合
分 类 号:TP391]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...