期刊文章详细信息
基于极化神经网络的雷达舰船检测识别方法
Radar Ship Target Detection and Recognition Based on Polarimetric Neural Networks
文献类型:期刊文章
LIN Xiaojing;XIAO Penghao;HE Liang;WANG Haipeng(Key Laboratory of EMW Information,School of Information Science and Technology,Fudan University,Shanghai 200433,China;Beijing Huahang Radio Measuring Institute,Beijing 102445,China)
机构地区:[1]复旦大学信息科学与工程学院电磁波信息科学教育部重点实验室,上海200433 [2]北京华航无线电测量研究所,北京102445
基 金:国家自然科学基金(62271153);上海市自然科学基金(22ZR1406700)。
年 份:2023
卷 号:40
期 号:1
起止页码:53-60
语 种:中文
收录情况:CSCD、CSCD2023_2024、ZGKJHX、普通刊
摘 要:相参雷达捕获的全极化海面目标距离-多普勒(RD)回波数据中,目标区域占比小、信噪比低,且海况环境与干扰种类多变,使得经典的深度神经网络在此种条件下检测识别精度较低。为此,本文提出了一种基于极化深度神经网络的全极化相参雷达海面目标检测识别算法。首先,引入极化特征提取模块挖掘目标与干扰的差异化特征;其次,通过特征金字塔网络解决小目标检测识别的问题;最后,使用级联结构进一步提升算法性能。在全极化相参雷达回波数据集上的测试结果表明:基于特征值与特征矢量的极化特征对于数据集中两类舰船目标的平均精度分别达到0.907 9与1.0,相比不采用极化特征有着显著提高。
关 键 词:距离-多普勒(RD)回波数据 海面目标检测识别 极化神经网络 极化特征 极化分解
分 类 号:TN957.51]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...