登录    注册    忘记密码

期刊文章详细信息

基于深度卷积神经网络的滚动轴承迁移故障诊断    

Transfer Fault Diagnosis of Rolling Bearings Based on Deep Convolutional Neural Network

  

文献类型:期刊文章

作  者:李欢[1,2] 吕勇[1,2] 袁锐[1,2] 杨旭[1,2]

LI Huan;LV Yong;YUAN Rui;YANG Xu(Key Laboratory of Metallurgical Equipment and Control Technology,Ministry of Education,School of Mechanical Automation,Wuhan University of Science and Technology,Wuhan 430081,China;Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering,School of Mechanical Automation,Wuhan University of Science and Technology,Wuhan 430081,China)

机构地区:[1]武汉科技大学机械自动化学院冶金装备及其控制教育部重点实验室,武汉430081 [2]武汉科技大学机械自动化学院机械传动与制造工程湖北省重点实验室,武汉430081

出  处:《组合机床与自动化加工技术》

基  金:国家自然科学基金面上项目(51875416);湖北省自然科学基金创新群体项(2020CFA033);中国博士后科学基金面上项目(2020M682492)。

年  份:2023

期  号:2

起止页码:90-94

语  种:中文

收录情况:BDHX、BDHX2020、JST、RCCSE、ZGKJHX、核心刊

摘  要:针对滚动轴承故障诊断中故障样本不足、诊断精度与诊断效率不高的问题,提出一种基于深度卷积神经网络的滚动轴承迁移故障诊断方法。首先,通过VMD对原始振动信号进行分解,利用中心频率法确定分解个数k;其次,按照最大峭度准则筛选出最佳固有模态函数(intrinsic mode function, IMF),并对其进行连续小波变换(continuous wavelet transform, CWT)生成时频图;最后,将预处理过的时频图输入到在ImageNet数据集预训练过的深度残差网络(residual network, ResNet)模型中微调,实现故障分类识别。在某大学公开轴承数据集和题课组数据集上验证,测试精度分别达到99.60%和100%,可有效实现滚动轴承故障诊断。

关 键 词:滚动轴承 深度卷积神经网络  变分模式分解  深度迁移学习  故障诊断

分 类 号:TH133.3] TG659]

参考文献:

正在载入数据...

二级参考文献:

正在载入数据...

耦合文献:

正在载入数据...

引证文献:

正在载入数据...

二级引证文献:

正在载入数据...

同被引文献:

正在载入数据...

版权所有©重庆科技学院 重庆维普资讯有限公司 渝B2-20050021-7
 渝公网安备 50019002500408号 违法和不良信息举报中心