期刊文章详细信息
文献类型:期刊文章
QI Linglong;GAO Jianling(College of Big Data and Information Engineering,Guizhou University,Guiyang 550025,China)
机构地区:[1]贵州大学大数据与信息工程学院,贵阳550025
基 金:国家自然科学基金(62166006)。
年 份:2023
卷 号:49
期 号:1
起止页码:41-48
语 种:中文
收录情况:AJ、BDHX、BDHX2020、CAS、CSCD、CSCD_E2023_2024、IC、JST、RCCSE、UPD、ZGKJHX、核心刊
摘 要:目前的目标检测技术已趋于成熟,但小目标检测仍是研究的难点。针对目标检测过程中小目标检测更容易出现漏检等问题,提出一种改进的YOLOv7目标检测模型。结合特征分离合并思想,对YOLOv7网络模型中的MPConv模块进行改进,以减少网络特征处理过程造成的特征损失,并通过实验确定放置改进MPConv模块的最佳位置。由于小目标检测过程中容易出现漏检的现象,利用ACmix注意力模块提高网络对小尺度目标的敏感度,降低噪声所带来的影响。在此基础上,使用SIoU替换原YOLOv7网络模型中的CIoU来优化损失函数,减少损失函数自由度,提高网络鲁棒性。在Okahublot公开的FloW-Img子数据集上进行实验,结果表明,对于数据集中的密集、小目标和超小目标三种情况的图片,改进后的YOLOv7网络模型相比原网络,漏检情况得到明显改善,且mAP达到71.1%,相比基线YOLOv7网络模型提升了4个百分点,检测效果优于原网络模型与传统经典目标检测网络模型。
关 键 词:目标检测技术 小目标检测 YOLOv7网络模型 注意力模块 损失函数
分 类 号:TP391]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...