期刊文章详细信息
文献类型:期刊文章
WANG Yixu;XIAO Xiaoling;WANG Pengfei;XIANG Jiafu(School of Computer Science,Yangtze University,Jingzhou,Hubei 434023,China)
机构地区:[1]长江大学计算机科学学院,湖北荆州434023
基 金:国家自然科学基金(61771354)。
年 份:2023
卷 号:59
期 号:1
起止页码:72-81
语 种:中文
收录情况:AJ、BDHX、BDHX2020、CSCD、CSCD_E2023_2024、IC、JST、RCCSE、ZGKJHX、核心刊
摘 要:针对复杂环境中,烟雾火焰检测存在精度低,小目标检测困难等问题,提出一种改进的基于YOLOv5s的小目标烟雾火焰检测算法。基于公开数据集自建了9981张不相似的烟雾火焰图像数据集,解决现有数据集的限制,提高了模型的训练效率与泛化能力;在网络中添加3-D注意力机制SimAM,增加算法的特征提取能力,而且没有增加额外的参数;修改网络中的Neck结构,将三尺度检测改为四尺度检测,并结合了加权双向特征金字塔网络(BiFPN)结构,对特征融合过程进行修改,提高小目标的检测能力与特征融合能力;通过遗传算法来优化网络中的部分超参数,进一步模型的检测能力。实验结果表明,改进后的算法比原始YOLOv5s算法平均检测精度提高了7.2%,同时对小目标检测精度更高,误检漏检等情况减少。
关 键 词:烟雾检测 火焰检测 YOLOv5s 小目标检测 3-D注意力机制
分 类 号:TP391]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...