期刊文章详细信息
基于多头自注意力的复杂背景船舶检测算法 ( EI收录)
Ship detection algorithm in complex backgrounds via multi-head self-attention
文献类型:期刊文章
YU Nan-jing;FAN Xiao-biao;DENG Tian-min;MAO Guo-tao(School of Shipping and Naval Architecture,Chongqing Jiaotong University,Chongqing 400074,China;College of Traffic and Transportation,Chongqing Jiaotong University,Chongqing 400074,China)
机构地区:[1]重庆交通大学航运与船舶工程学院,重庆400074 [2]重庆交通大学交通运输学院,重庆400074
基 金:国家重点研发计划项目(SQ2020YFF0418521);重庆市技术创新与应用发展专项重点项目(cstc2020jscx-dxwtBX0019);川渝联合实施重点研发项目(cstc2020jscx-cylhX0005,cstc2020jscx-cylhX0007)。
年 份:2022
卷 号:56
期 号:12
起止页码:2392-2402
语 种:中文
收录情况:AJ、BDHX、BDHX2020、CAS、CSCD、CSCD2021_2022、EI、IC、JST、RCCSE、SCOPUS、ZGKJHX、ZMATH、核心刊
摘 要:针对内河港口背景复杂、类间尺度差异大和小目标实例多的特点,提出基于多头自注意力机制(MHSA)和YOLO网络的船舶目标检测算法(MHSA-YOLO).在特征提取过程中,基于MHSA设计并行的自注意力残差模块(PARM),以弱化复杂背景信息干扰并强化船舶目标特征信息;在特征融合过程中,开发简化的双向特征金字塔结构,以强化特征信息的融合与表征能力.在Seaships数据集上的实验结果表明,与其他先进的目标检测方法相比,MHSA-YOLO拥有较好的学习能力,在检测精度方面取得97.59%的平均均值精度,MHSA-YOLO对复杂背景船舶目标和小尺寸目标的检测更有效.基于自制数据集的实验结果表明,MHSA-YOLO的泛化能力强.
关 键 词:智能航行 目标检测 复杂背景 自注意力机制 多尺度特征融合
分 类 号:TU675.79] TP391.41]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...