期刊文章详细信息
文献类型:期刊文章
WU Yuhao;WANG Yongsheng;XU Hao;CHEN Zhen;ZHANG Zhe;GUAN Shijie(College of Data Science and Application,Inner Mongolia University of Technology,Hohhot 010080,China;Inner Mongolia Autonomous Region Engineering&Technology Research Center of Big Data Based Software Service,Hohhot 010080,China)
机构地区:[1]内蒙古工业大学数据科学与应用学院,呼和浩特010080 [2]内蒙古自治区基于大数据的软件服务工程技术研究中心,呼和浩特010080
基 金:内蒙古自治区自然科学基金(2021LHMS06001);内蒙古自治区高等学校科学研究项目(NJZY21321);内蒙古自治区科技重大专项项目(2020GG0094)。
年 份:2022
卷 号:16
期 号:12
起止页码:2653-2677
语 种:中文
收录情况:BDHX、BDHX2020、CSCD、CSCD2021_2022、DOAJ、IC、JST、ZGKJHX、核心刊
摘 要:风电具有的波动性、间歇性等特点对并网造成一定程度的影响,提前进行风电功率预测是解决上述问题的一个重要途径。但传感器传输、网络通信等不可控因素的存在,导致采集到用于风电功率预测的数据存在异常值和缺失值,因此在进行风电功率预测前应当进行相应的异常值检测和缺失值插补操作。为进一步促进风电数据清洗及预测技术的发展,对当前现有模型及方法进行分析与总结,并对现有技术进行划分、对比。从时序数据出发,首先,对风电预测领域的异常值检测方法的研究现状进行分类、分析与总结,对现有异常检测方法所存不足与缺陷进行概述,并对未来发展中或将成为重点的研究方向进行展望;其次,将现有的缺失值处理方法的评价指标进行描述,根据处理方式的不同将处理技术按照常规处理方法、辨别式的插补方法、生成式的插补方法及物理特性方法进行分析与总结,并对现有研究中所存问题进行分析;最后,对现有研究中的预测方法、多层级预测及自适应预测系统的研究现状进行分析总结,并对现有预测存在的挑战及未来发展方向进行了总结与展望。
关 键 词:深度学习 风电功率预测 异常值检测 缺失值插补 时间序列数据
分 类 号:TP391]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...