期刊文章详细信息
文献类型:期刊文章
ZHANG Wen;WANG Qiang;DU Yuhang;NIE Kun;LI Jian(College of Economics and Management,Beijing University of Technology,Beijing 100124,China;TravelSky Technology Limited,Beijing 101318,China;College of Business Management,Zhejiang Gongshang University,Hangzhou 310018,China)
机构地区:[1]北京工业大学经济与管理学院,北京100124 [2]中国民航信息网络股份有限公司大数据技术部,北京101318 [3]浙江工商大学工商管理学院,杭州310018
基 金:国家自然科学基金(72174018,71932002);北京自然科学基金(9222001);国家社科基金一般项目(20BGL058)。
年 份:2022
卷 号:42
期 号:10
起止页码:2757-2768
语 种:中文
收录情况:BDHX、BDHX2020、CSCD、CSCD2021_2022、CSSCI、CSSCI2021_2022、EAPJ、EI、IC、JST、NSSD、RCCSE、RWSKHX、SCOPUS、ZGKJHX、核心刊
摘 要:随着电子商务的飞速发展,电商平台上的在线商品评论成为消费者在线购物时做出购买决策的重要参考,同时也是平台商家获取在线消费者真实关切的重要信息来源.然而,海量的良莠不齐的在线商品评论使得消费者和商家很难从中获取有价值的高质量信息.一方面,本文在经典的主题分析LDA模型的基础之上提出了一种基于评论有用性的主题分析模型,即Help-LDA模型.相比与假定每条评论具有同等重要程度的LDA模型,Help-LDA模型根据评论有用性对不用评论赋予不同的权重,进而从有用性较高的评论中抽取出对于消费者更有用的决策信息.另一方面,本文基于Help-LDA模型提出了新的评论文本表示方法,并结合SVM方法进行评论有用性预测.通过收集大众点评网站在线评论进行的实验表明,Help-LDA模型能够从电商评论中高质量抽取在线消费者对于商家商品和服务的真实关切.并且基于Help-LDA模型的评论文本表示结合SVM方法能够显著提升在线评论有用性预测性能.
关 键 词:在线商品评论 主题分析 评论有用性 评论主题提取 有用性预测
分 类 号:TP18]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...