登录    注册    忘记密码

期刊文章详细信息

基于自然语言处理的材料领域知识图谱构建方法    

Constructing a material-domain knowledge graph based on natural language processing

  

文献类型:期刊文章

作  者:魏晓[1] 王晓鑫[1] 陈永琪[1] 张惠然[1,2,3]

WEI Xiao;WANG Xiaoxin;CHEN Yongqi;ZHANG Huiran(School of Computer Engineering and Science,Shanghai University,Shanghai 200444,China;Center of Materials Informatics and Data Science,Materials Genome Institute,Shanghai University,Shanghai 200444,China;Zhejiang Laboratory,Hangzhou 311100,Zhejiang,China)

机构地区:[1]上海大学计算机工程与科学学院,上海200444 [2]上海大学材料基因组工程研究院材料信息与数据科学中心,上海200444 [3]之江实验室,浙江杭州311100

出  处:《上海大学学报(自然科学版)》

基  金:国家重点研发计划资助项目(2018YFB0704400);云南省重大科技专项资助项目(202002AB080001-2,202102AB080019-3);之江实验室科研攻关资助项目(2021PE0AC02);上海张江国家自主创新示范区专项发展资金重大资助项目(ZJ2021-ZD-006)。

年  份:2022

卷  号:28

期  号:3

起止页码:386-398

语  种:中文

收录情况:AJ、BDHX、BDHX2020、CAS、CSCD、CSCD_E2021_2022、JST、MR、RCCSE、ZGKJHX、ZMATH、核心刊

摘  要:如何将材料领域知识与机器学习技术相结合是材料智能研究迫切需要解决的问题.知识图谱(knowledge graphs,KGs)作为一种高效的知识组织模型,可以有效地对材料领域知识进行表示、组织和推理,从而提升材料机器学习算法的智能水平.研究了基于自然语言处理技术的材料领域知识自动获取方法,提出了基于双向门控循环单元-图神经网络-条件随机场(bidirectional-gated recurrent unit-graph neural network-conditional random field,Bi-GRU-GNN-CRF)的材料实体关系联合抽取方法,以及基于改进TextRank算法的材料工艺知识抽取方法,实现了从专利、论文等材料文献中自动获取材料实体、关系、工艺流程等材料领域知识.实验结果表明,所提出的材料知识获取方法具有较好的精度和召回率,能够有效提升材料知识图谱的知识覆盖度.基于该方法构建的材料领域知识图谱的知识覆盖率达到了80%,能够为材料智能研发提供更加全面的知识支撑.同时,构建了非调制特殊钢、铝基复合材料、热障陶瓷涂层材料3个材料领域知识图谱,并进行了应用探索,进一步验证了知识图谱为材料研发提供知识支撑的可能性.

关 键 词:材料智能  自然语言处理 知识图谱

分 类 号:TP182]

参考文献:

正在载入数据...

二级参考文献:

正在载入数据...

耦合文献:

正在载入数据...

引证文献:

正在载入数据...

二级引证文献:

正在载入数据...

同被引文献:

正在载入数据...

版权所有©重庆科技学院 重庆维普资讯有限公司 渝B2-20050021-7
 渝公网安备 50019002500408号 违法和不良信息举报中心