期刊文章详细信息
文献类型:期刊文章
XING Jinchao;PAN Guangzhen(School of Software,North University of China,Taiyuan 030000,China)
机构地区:[1]中北大学软件学院,太原030000
年 份:2022
卷 号:58
期 号:16
起止页码:194-203
语 种:中文
收录情况:AJ、BDHX、BDHX2020、CSCD、CSCD_E2021_2022、IC、JST、RCCSE、ZGKJHX、核心刊
摘 要:为解决健全人士与听障人士交互信息困难的问题,提出一种改进YOLOv5s网络模型的手语识别网络。应用K-means++算法提高先验锚框的尺寸匹配度,确定了最优先验锚框尺寸,实现先验锚框与实际物体的精确匹配;改进CBAM(convolution block attention module)注意力机制的通道域,解决其因降维而造成的通道信息缺失问题,并将改进后的CBAM加入到YOLOv5s的骨干网络中,使模型更加精准地定位和识别到关键的目标。将Cross Entropy Loss和Lovasz-Softmax Loss加权结合使用,使得网络在模型训练过程中更加稳定地收敛,在精准率上也得到了一定的提升。实验结果表明,与原本的YOLOv5s模型相比,改进后网络模型的平均精度均值(mean average precision,mAP)、精准率和召回率分别提升了3.44个百分点、3.17个百分点、1.89个百分点,有效地提高了手语识别网络的检测精确度。
关 键 词:手语识别 YOLOv5 K-means++ 注意力机制 损失函数
分 类 号:TP391.4]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...