登录    注册    忘记密码

期刊文章详细信息

基于改进随机森林算法的岩石爆破块度预测    

Prediction for Blasting Fragmentation of Rocks Based on Improved Random Forest Regression Method

  

文献类型:期刊文章

作  者:刘翔[1,2] 谢涛[3] 王训洪[1] 易泽邦[4] 何秋芝[1]

LIU Xiang;XIE Tao;WANG Xunhong;YI Zebang;HE Qiuzhi(Guangxi University of Science and Technology,Liuzhou,Guangxi 545006,China;Liuzhou Weiyu Blasting Engineering Co.,Ltd,,Liuzhou,Guangxi 545002,China;The Eleventh Metallurgical Construction Group Co.,Ltd.,Liuzhou,Guangxi 545027,China;Guilin University of Technology,Guilin,Guangxi 541004,China)

机构地区:[1]广西科技大学,广西柳州市545006 [2]柳州威宇爆破工程有限责任公司,广西柳州市545002 [3]十一冶建设集团有限责任公司,广西柳州市545027 [4]桂林理工大学,广西桂林市541004

出  处:《矿业研究与开发》

基  金:国家自然科学基金青年基金项目(42003066);广西科技基地与人才专项项目(2021AC19198,2021AC19200);广西科技大学博士基金项目(校科博20S10,21Z29)。

年  份:2022

卷  号:42

期  号:7

起止页码:25-29

语  种:中文

收录情况:BDHX、BDHX2020、CAS、JST、ZGKJHX、核心刊

摘  要:为提高岩石爆破块度预测效果,利用多个矿山的岩石爆破统计数据,通过影响爆破岩石块度因素的重要度计算和皮尔逊相关系数判定筛选出炸药单耗、岩石块度尺寸、岩石弹性模量以及炮孔堵塞长度与炮孔排距比(T/B)等6个特征变量作为输入参数,建立一种基于改进随机森林回归算法的爆破块度预测模型。该模型预测的爆破块度逼近真实值,预测结果的可决系数(R)、均方根误差(RMSE)和平均相对误差(MRE)分别为0.9881,0.0430和0.1445,相较于线性回归预测模型和BP神经网络预测模型而言,其预测效果更优,因此该模型在实际应用中更具适用性,能够为爆破参数设计和优化提供参考。

关 键 词:爆破块度 随机森林回归模型  块度预测 预测精度  

分 类 号:TD235] TD804

参考文献:

正在载入数据...

二级参考文献:

正在载入数据...

耦合文献:

正在载入数据...

引证文献:

正在载入数据...

二级引证文献:

正在载入数据...

同被引文献:

正在载入数据...

版权所有©重庆科技学院 重庆维普资讯有限公司 渝B2-20050021-7
 渝公网安备 50019002500408号 违法和不良信息举报中心