期刊文章详细信息
超大城市土地覆盖与热环境的随机森林回归模型研究
Study on the Random Forest Regression Model of Land Cover and Thermal Environment in Megacities
文献类型:期刊文章
Wang Meiya;Xu Hanqiu(School of History and Geography,Minnan Normal University,Zhangzhou 363000,China;College of Environment and Resources,Institute of Remote Sensing Information Engineering,Fujian Provincial Key Laboratory of Remote Sensing of Soil Erosion and Disaster Prevention,Fuzhou University,Fuzhou 350116,China)
机构地区:[1]闽南师范大学历史地理学院,福建漳州363000 [2]福州大学环境与资源学院,福州大学遥感信息工程研究所,福建省水土流失遥感监测评估与灾害防治重点实验室,福建福州350116
基 金:国家重点研发计划专项课题(2016YFA0600302);福建省创新战略研究项目(2020R0155);闽南师范大学校长基金项目(KJ19013)。
年 份:2022
卷 号:37
期 号:2
起止页码:379-388
语 种:中文
收录情况:BDHX、BDHX2020、CSCD、CSCD2021_2022、JST、RCCSE、ZGKJHX、核心刊
摘 要:目前对于超大城市土地覆盖和热环境定量模型研究报道不足,这主要是因为大城市地表温度和地表生物物理组分之间存在复杂的潜在非线性关系,这使得准确评估城市热环境情况遇到了严峻的技术挑战。研究选取中外6个典型超大城市(北京、上海、广州、伦敦、纽约和东京)为研究对象,以Landsat遥感影像为主要数据源,利用单通道算法反演各城市地表温度,采用随机森林回归模型(RFR)建立土地覆盖类型与城市热环境定量关系模型(LCT),综合分析城市土地覆盖因子与热环境间的多维定量关系。土地覆盖与地表温度的定量关系显示,城市地表热场的空间结构在很大程度上被下垫面用地类型所左右,不透水面会导致高温热场的聚集,而植被和水体则有降温作用。6个超大城市地表覆盖结构变化产生的升温/降温效应有所差异,北京、上海、纽约和东京等城市区域的植被和水体降温效应较广州和伦敦显著。基于随机森林回归方法建立了NDVI、MNDWI和NDISI等3种土地覆盖类型与城市热环境的综合定量关系模型(LCT),模型得到的精度高于基于多元线性回归方法建立的模型。LCT_RF模型的R2值在0.623~0.826之间,比LCT_MLR模型高0.021~0.074;RMSE比LCT_MLR模型低0.07℃~0.35℃。研究超大城市土地覆盖与城市热环境的互动作用机理,能为未来生态城市建设提供宝贵建议。
关 键 词:超大城市 土地覆盖 城市热环境 遥感 随机森林回归模型
分 类 号:P237]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...