期刊文章详细信息
文献类型:期刊文章
QIU Tianheng;WANG Ling;WANG Peng;BAI Yan’e(College of Computer Science and Technology,Changchun University of Science and Technology,Changchun 130022,China)
机构地区:[1]长春理工大学计算机科学技术学院,长春130022
基 金:中央引导地方科技发展基金吉林省基础研究专项(202002038JC)。
年 份:2022
卷 号:58
期 号:13
起止页码:63-73
语 种:中文
收录情况:AJ、BDHX、BDHX2020、CSCD、CSCD_E2021_2022、IC、JST、RCCSE、ZGKJHX、核心刊
摘 要:YOLOv5是目前单阶段目标检测性能较好的算法,但对目标边界回归的精确度不高,难以适用对预测框交并比要求较高的场景。基于YOLOv5算法,提出一种对硬件要求低、模型收敛速度快、目标框准确率高的新模型YOLO-G。改进特征金字塔结构(FPN),采用跨层级联的方式融合更多的特征,一定程度上防止了浅层语义信息的丢失,同时加深金字塔深度,对应增加检测层,使各种锚框的铺设间隔更加合理;其次把并行模式的注意力机制融入到网络结构中,赋予空间注意力模块和通道注意力模块相同的优先级,以加权融合的方式提取注意力信息,使网络可根据对空间和通道注意力的关注程度得到混合域注意力;通过降低网络的参数量和计算量对网络进行轻量化处理,防止因模型复杂度提升造成实时性能的损失。使用PASCALVOC的2007、2012两个数据集来验证算法的有效性,YOLO-G比YOLOv5s的参数量减少了4.7%,计算量减少了47.9%,而mAP@0.5提高了3.1个百分点,mAP@0.5:0.95提高了5.6个百分点。
关 键 词:YOLOv5算法 特征金字塔(FPN) 注意力机制 目标检测
分 类 号:TP391.4]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...