期刊文章详细信息
文献类型:期刊文章
XU Wan;YANG Ye;YU Lei-tao;ZHU Li(School of Mechanical Engineering,Hubei University of Technology,Wuhan 430068,China)
机构地区:[1]湖北工业大学机械工程学院,武汉430068
基 金:国家自然科学基金项目(61976083).
年 份:2022
卷 号:37
期 号:4
起止页码:829-838
语 种:中文
收录情况:AJ、BDHX、BDHX2020、CSCD、CSCD2021_2022、EAPJ、EI、IC、JST、RCCSE、SCOPUS、ZGKJHX、ZMATH、核心刊
摘 要:针对传统RRT*全局路径规划算法在多障碍物复杂环境中搜索效率低、占用内存过大、搜索路径不平滑等问题,提出一种基于简化地图的区域采样RRT*算法(simplified map-based regional sampling RRT*,SMRS-RRT*).首先简化处理全局栅格地图,在此基础上寻找从起点到目标点的最优路径点集合,并将该路径作为引导路径通过智能采样因子进行扩大,得到智能采样区域;然后在智能采样区域中不断迭代搜索,得到一条从起点到目标点的代价小、无碰撞路径;最后结合最小转弯半径约束的路径修剪和基于B样条曲线的路径优化,生成一条路径平滑且曲率连续的优化路径,从而使移动机器人沿着该全局优化路径快速、平稳、安全地到达目标点.仿真实验表明,所提出算法能够有效提高传统RRT*搜索效率,加快收敛速度,降低内存消耗.
关 键 词:简化地图 智能采样区域 RRT* 全局路径规划 路径平滑
分 类 号:TP273]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...