期刊文章详细信息
改进DeepLabV3+网络的遥感影像农作物分割方法
Crop SegmentationMethod of Remote Sensing Image Based on Improved DeepLabV3+Network
文献类型:期刊文章
REN Hongjie;LIU Ping;DAI Chao;SHI Juncai(College of Big Data,Taiyuan University of Technology,Jinzhong,Shanxi 030600,China)
机构地区:[1]太原理工大学大数据学院,山西晋中030600
基 金:山西省自然科学基金面上项目(201901D111052)。
年 份:2022
卷 号:58
期 号:11
起止页码:215-223
语 种:中文
收录情况:AJ、BDHX、BDHX2020、CSCD、CSCD_E2021_2022、IC、JST、RCCSE、ZGKJHX、核心刊
摘 要:针对于当前遥感影像农作物提取存在的识别精度较低、边缘识别效果较差、提取速度慢等问题,提出了一种改进DeepLabV3+网络的遥感影像农作物分割方法。将特征提取网络改为更轻量级的MobileNetV2网络,空洞空间金字塔池化模块中的普通卷积改为深度可分离卷积,大幅减少模型计算量,提高模型计算速度;在特征提取模块以及空洞空间金字塔池化模块加入双注意力机制,进一步优化模型边缘识别效果,提升模型分割精度。此外针对农作物数据集类别不平衡问题,引入加权损失函数,给予玉米、薏米与背景类不同的权重,提高模型对农作物区域分割精度。以2019年某地区的无人机遥感影像为研究对象,对玉米、薏米两种农作物进行分割。实验结果表明,改进DeepLabV3+算法像素准确率可达到93.9%,平均召回率可达到90.7%,平均交并比可达到83.3%,优于传统DeepLabV3+、Unet、Segnet等常用于农作物提取的分割方法,对农作物具有更好的分割效果。
关 键 词:农作物分割 双注意力机制 加权损失函数 无人机遥感影像
分 类 号:TP391]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...