期刊文章详细信息
基于深度学习的多模光纤通信系统的模式与模群识别 ( EI收录)
Deep Learning-Based Recognition of Modes and Mode Groups in Multimode Optical Fiber Communication System
文献类型:期刊文章
Hu Jinkun;Guo Xiaojie;Li Jianping;Xu Ou;Xiang Meng;Peng Di;Fu Songnian;Qin Yuwen(Institute of Photonics Technology,Jinan University,Guangzhou,Guangdong 510632,China;School of Information Engineering,Guangdong University of Technology,Guangzhou,Guangdong 510006,China;Guangdong Provincial Key Laboratory of Information Photonics Technology,Guangzhou,Guangdong 510006,China)
机构地区:[1]暨南大学光子技术研究院,广东广州510632 [2]广东工业大学信息工程学院,广东广州510006 [3]广东省信息光子技术重点实验室,广东广州510006
基 金:国家重点研发计划(2018YFB1800901);国家自然科学基金(62022029);广东省“珠江人才计划”引进创新创业团队项目(2019ZT08X340);广东省重点领域研发计划项目(2018B010114002);粤桂联合基金项目(2021GXNSFDA076001)。
年 份:2022
卷 号:42
期 号:4
起止页码:38-45
语 种:中文
收录情况:BDHX、BDHX2020、CAS、CSCD、CSCD2021_2022、EAPJ、EI、IC、JST、RCCSE、SCOPUS、WOS、ZGKJHX、核心刊
摘 要:基于模式/模群复用的多模光纤通信系统是目前光通信领域的研究热点。系统中存在多个模式/模群,如何准确识别它们是提升传输系统性能的关键问题之一。提出了一种基于深度学习的多模光纤模式与模群的智能识别模型,通过引入全卷积神经网络(CNN),对噪声影响情况下线偏振模式及其模群进行仿真和实验研究。首先,基于多平面光转换模式复用器件和普通OM2多模光纤,搭建10个模式(LP01、LP11a/b、LP21a/b、LP02、LP12a/b、LP31a/b)及其对应的3个模群的光场信息获取的仿真和实验平台,利用大量数据进行训练和验证。实验结果显示,模式/模群的总体识别率可达到100%。通过将获取的模群光场图片重构为低分辨率图片,研究低密度光电探测器阵列接收条件下,智能识别模型的识别性能。实验结果显示,采取4×4光探测器阵列接收光场信息时,能获得98.3%的识别效率。本研究表明提出的智能识别模型具有良好的光纤模式/模群智能识别能力,其在多模光纤通信系统性能提升与智能光性能监测方面具有一定的应用潜力。
关 键 词:光通信 模分复用 深度学习 模式/模群识别
分 类 号:TN913.7]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...