期刊文章详细信息
文献类型:期刊文章
WU Guangyu;SHI Hongquan;QIU Chuchu(Dalian Naval Academy,Dalian 116018;No.91991 Troops of PLA,Zhoushan 316041)
机构地区:[1]海军大连舰艇学院,大连116018 [2]中国人民解放军91991部队,舟山316041
年 份:2022
卷 号:42
期 号:3
起止页码:29-34
语 种:中文
收录情况:ZGKJHX、普通刊
摘 要:针对传统的网格搜索算法(GSA)和粒子群算法(PSO)分别优化的支持向量机(SVM)无法同时满足舰船对空中目标意图识别中准确性和快速性的需要而导致识别效果较差的问题,提出了一种基于麻雀搜索算法(SSA)优化支持向量机的空中目标意图识别方法,建立了基于SSA-SVM的空中目标意图识别模型,并通过仿真实验与上述两种算法优化的支持向量机模型进行效果对比。结果表明,相比GSA-SVM和PSO-SVM,SSA-SVM同时具有较高的识别准确率和较短的识别运算时间。因此SSA-SVM能够既准确又快速地识别空中目标意图,具有更好的识别效果,验证了该方法的有效性。
关 键 词:支持向量机 网格搜索算法 粒子群算法 麻雀搜索算法 空中目标意图识别
分 类 号:TP391] E911[计算机类]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...