期刊文章详细信息
文献类型:期刊文章
Liang Xu;Li Wenxin;Zhang Hangning(Lanzhou Institute of Physics,Lanzhou 730000,China)
机构地区:[1]兰州空间技术物理研究所,兰州730000
年 份:2022
卷 号:39
期 号:3
起止页码:651-660
语 种:中文
收录情况:AJ、BDHX、BDHX2020、CSCD、CSCD_E2021_2022、IC、JST、RCCSE、UPD、ZGKJHX、ZMATH、核心刊
摘 要:随着计算机视觉不断发展,人体行为识别在视频监控、视频检索和人机交互等诸多领域中展现出其广泛的应用前景和研究价值。人体行为识别涉及到对图像内容的理解,由于人体姿势复杂多样和背景遮挡的因素导致实际应用的进展缓慢。全面回顾了人体行为识别的发展历程,深入探究了该领域的研究方法,包括传统手工提取特征的方法和基于深度学习的方法,以及最近十分热门的基于图卷积网络(GCN)的方法,并按照所使用的数据类型对这些方法进行了系统的梳理;此外,针对不同的数据类型,分别介绍了一些热门的行为识别数据集,对比分析了各类方法在这些数据集上的性能。最后进行了概括总结,并对未来人体行为识别的研究方向进行了展望。
关 键 词:计算机视觉 人体行为识别 深度学习 图卷积网络 数据集
分 类 号:TP391.41]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...