期刊文章详细信息
文献类型:期刊文章
Wu Jigang;Cheng Yuan;Shao Jun;Yang Deqiang(Hunan Provincial Key Laboratory of Health Maintenance for Mechanical Equipment,Hunan University of Science and Technology,Xiangtan 411201,China)
机构地区:[1]湖南科技大学机械设备健康维护湖南省重点实验室,湘潭411201
基 金:国家自然科学基金(51775181)项目资助。
年 份:2021
卷 号:42
期 号:10
起止页码:171-178
语 种:中文
收录情况:BDHX、BDHX2020、CAS、CSCD、CSCD2021_2022、EAPJ、EI、IC、JST、RCCSE、SCOPUS、ZGKJHX、核心刊
摘 要:针对现用PCB缺陷检测方法存在效率低、误检率高、通用性低、实时性差等问题,提出基于改进YOLOv4算法的PCB缺陷检测方法。使用改进二分K-means聚类结合交并比(IoU)损失函数确定锚框,解决预设锚框不适用PCB小目标缺陷检测的问题。引用MobileNetV3作为特征提取网络,提升对PCB小目标缺陷的检测性能,同时方便部署在现场轻量化移动端。引入Inceptionv3作为检测网络,利用多种卷积核进行运算满足PCB缺陷多类别的检测要求。以PCB_DATASET数据集为测试对象,将本文方法与Faster R-CNN、YOLOv4、MobileNetV3-YOLOv4等开展对比验证实验。结果表明,本文方法均值平均精度(mAP)为99.10%,模型大小为53.2 MB,检测速度为43.01 FPS,检测mAP分别提升4.88%、0.05%、2.01%,模型大小分别减少0、203.2、3.3 MB,检测速度分别提升29.93、6.37、0.79 FPS,满足PCB工业生产现场高检测精度和检测速度要求。
关 键 词:PCB缺陷检测 YOLOv4 二分K-means聚类 MobileNetV3 Inceptionv3
分 类 号:TH862[仪器类] TP391.41]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...