期刊文章详细信息
基于BP神经网络算法预测的重型半挂汽车列车AEB控制策略研究 ( EI收录)
Research on AEB Control Strategy of a Heavy Tractor-Semitrailer Combination Based on BP Neural Network Algorithm Prediction
文献类型:期刊文章
Guo Xiangjing;Sun Pan;Deng Jie;Liu Yong;Liu Zhuang;Liu Shuangping(Dongfeng Commercial Vehicle Technology Center,Wuhan 430056)
机构地区:[1]东风商用车技术中心,武汉430056
年 份:2021
卷 号:43
期 号:9
起止页码:1350-1359
语 种:中文
收录情况:BDHX、BDHX2020、CSCD、CSCD2021_2022、EI、IC、JST、RCCSE、SCOPUS、ZGKJHX、核心刊
摘 要:我国商用车AEB性能要求和试验方法标准的发布,推动了AEB在商用车领域的发展与应用。本文针对半挂汽车列车制动距离长、质心高等特点,结合驾驶员紧急制动的经验,提出了一种基于BP神经网络预测碰撞时间TTC的AEB控制策略。首先,设计了上层控制器,基于不同驾驶员在不同紧急制动场景下碰撞时间的数据,利用BP神经网络算法得到预测模型,从而计算出触发AEB系统的预警时间阈值和紧急制动时间阈值;再以前车与本车的相对距离、相对速度和前车的减速度为输入,通过模糊控制规则得到本车期望的减速度;接着,设计了下层控制器,采用期望减速度前馈控制和减速度偏差PID反馈控制相结合的方式,得到各车轮所需的轮缸制动压力;并基于滑移率滑模控制防止车轮抱死,提高紧急制动时的安全性、舒适性和横摆稳定性。最后,在TruckSim中建立CCRb、CCRm、CCRs 3种测试场景,对控制策略进行了验证。结果表明,本文所提出的控制策略能有效避免碰撞的发生,为半挂汽车列车AEB系统的设计和研究提供了理论依据。
关 键 词:半挂汽车列车 自动紧急制动控制系统 BP神经网络算法 模糊控制 PID控制 滑模控制
分 类 号:TP183] U469.5]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...