期刊文章详细信息
文献类型:期刊文章
YU Houdan;MI Qiushi;ZHAO Dong;XIAO Qian(Optical Fiber Research Center,Department of Material Science,Fudan University,Shanghai 200433,China)
机构地区:[1]复旦大学材料科学系光纤研究中心,上海200433
基 金:上海市科委项目(No.17DZ2280600)。
年 份:2021
卷 号:50
期 号:9
起止页码:87-97
语 种:中文
收录情况:AJ、BDHX、BDHX2020、CAS、CSCD、CSCD2021_2022、EI、IC、JST、RCCSE、SCOPUS、WOS、ZGKJHX、核心刊
摘 要:针对干涉型分布式光纤传感系统,在通过Mel倒谱系数方法提取扰动信号频域特征进行模式识别的研究基础上,提出了一种基于一维卷积神经网络的光纤入侵模式识别方法。利用还原信号的分级阈值判断并提取入侵信号,有效减少了分帧方法导致的计算时间;构建了基于入侵信号傅里叶变换后的频域信息的一维卷积神经网络,自适应地提取扰动的信号频域特征。搭建了基于直线型Sagnac干涉结构的入侵检测系统,利用大量实验采集的样本数据集对网络进行训练,得到了较好的分类识别结果,测试集的平均识别率达到了96.5%,并对训练后网络的卷积核以及经过卷积核后的入侵信号进行了分析。zscore标准化后,一维卷积神经网络能够识别信号频域中的部分特征,对频率成分复杂的树枝拍打信号识别效果提升较大。
关 键 词:光纤光学 周界传感 模式识别 特征提取 卷积神经网络
分 类 号:TP212.9]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...