登录    注册    忘记密码

期刊文章详细信息

基于深度学习的输煤皮带故障视觉检测方法研究    

Research on visual detection method for fault of coal conveyor belt based on deep learning

  

文献类型:期刊文章

作  者:毕东月[1]

BI Dongyue(Pera Corporation Ltd.,Beijing 100025,China)

机构地区:[1]安世亚太科技股份有限公司,北京100025

出  处:《中国安全生产科学技术》

年  份:2021

卷  号:17

期  号:8

起止页码:84-90

语  种:中文

收录情况:BDHX、BDHX2020、CAS、CSCD、CSCD_E2021_2022、IC、JST、RCCSE、ZGKJHX、核心刊

摘  要:为了更好地检测皮带跑偏、撕裂和异物干扰等严重影响皮带安全运行的故障状态,围绕相关问题产生的原因及检测方法开展深入研究,通过对纵/横向裂缝、异物的检测分析、实验,提高基于视觉的检测精度。提出基于Canny边缘检测算法的皮带跑偏检测算法;基于深度学习的横向与纵向撕裂检测,尤其对于裂缝与纵向纹理区分不明显情况,提出一种红光透射的判别方式;基于最小距离分类算法将识别异物转换为分类问题,利用机器学习的方法对样本进行训练并建立无异物阈值,通过提取特征,最后利用最小距离分类算法得到有无异物的结果。研究结果表明:提出的视觉检测系统可以实时高效地检测出输煤皮带常见的3种故障,可进一步保障运输系统安全运行。

关 键 词:带式输送机 输煤皮带 故障  深度学习  视觉检测

分 类 号:TD528] X936[安全科学与工程类]

参考文献:

正在载入数据...

二级参考文献:

正在载入数据...

耦合文献:

正在载入数据...

引证文献:

正在载入数据...

二级引证文献:

正在载入数据...

同被引文献:

正在载入数据...

版权所有©重庆科技学院 重庆维普资讯有限公司 渝B2-20050021-7
 渝公网安备 50019002500408号 违法和不良信息举报中心