期刊文章详细信息
基于迁移学习的葡萄叶片病害识别及移动端应用 ( EI收录)
Recognition of grape leaf diseases and mobile application based on transfer learning
文献类型:期刊文章
Su Shifang;Qiao Yan;Rao Yuan(School of Information&Computer,Anhui Agricultural University,Hefei 230036,China)
机构地区:[1]安徽农业大学信息与计算机学院,合肥230036
基 金:安徽省自然科学基金(2008085MF203);国家自然科学基金(31671589);安徽省重点研究和开发计划面上攻关项目(201904a06020056)。
年 份:2021
卷 号:37
期 号:10
起止页码:127-134
语 种:中文
收录情况:AJ、BDHX、BDHX2020、CAB、CAS、CSCD、CSCD2021_2022、EAPJ、EI、IC、JST、PROQUEST、RCCSE、SCOPUS、ZGKJHX、核心刊
摘 要:为解决已有的卷积神经网络在小样本葡萄病害叶片识别的问题中出现的收敛速度慢,易产生过拟合现象等问题,提出了一种葡萄叶片病害识别模型(Grape-VGG-16,GV),并针对该模型提出基于迁移学习的模型训练方式。将VGG-16网络在ImageNet图像数据集上学习的知识迁移到本模型中,并设计全新的全连接层。对收集到的葡萄叶片图像使用数据增强技术扩充数据集。基于扩充前后的数据集,对全新学习、训练全连接层的迁移学习、训练最后一个卷积层和全连接层的迁移学习3种学习方式进行了试验。试验结果表明,1)迁移学习的2种训练方式相比于全新学习准确率增加了10~13个百分点,并在仅训练25轮达到收敛,该方法有效提升了模型分类性能,缩短模型的收敛时间;2)数据扩充有助于增加数据的多样性,并随着训练次数的增加,训练与测试准确率同步上升,有效缓解了过拟合现象。在迁移学习结合数据扩充的方式下,所构建的葡萄叶片病害识别模型(GV)对葡萄叶片病害的识别准确率能达到96.48%,对健康叶、褐斑病、轮斑病和黑腐病的识别准确率分别达到98.04%、98.04%、95.83%和94.00%。最后,将最终的研究模型部署到移动端,实现了田间葡萄叶片病害的智能检测,为葡萄病害的智能诊断提供参考。
关 键 词:图像识别 病害 葡萄叶片 迁移学习 数据扩充 移动端
分 类 号:TP391.4] TP181[计算机类]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...