期刊文章详细信息
文献类型:期刊文章
HE Yaying;FAN Xinwei(College of Quality and Safety Engineering,China Jiliang University,Hangzhou 310018,China)
机构地区:[1]中国计量大学质量与安全工程学院,杭州310018
基 金:国家重点研发计划(2017YFF0209700)。
年 份:2021
卷 号:57
期 号:16
起止页码:276-282
语 种:中文
收录情况:AJ、BDHX、BDHX2020、CSCD、CSCD_E2021_2022、IC、JST、RCCSE、ZGKJHX、核心刊
摘 要:针对传统蚁群算法在移动机器人路径规划问题中存在的易陷入局部最优与收敛速度慢等问题,提出一种改进的蚁群算法。根据起点到终点距离和地图参数构建全局优选区域,提高该区域内初始信息素浓度,避免算法初期盲目搜素;利用局部分块优化策略分别对各个子区域进行寻优并更新区域内最优路径信息素,增强局部搜索能力,加快收敛速度;对全局路径进行寻优,更新全局最优路径信息素。在信息素更新公式中引入信息素增强因子,加强最优路径信息素含量,应用反向学习优化信息素,改进状态选择概率,提高算法寻优能力。实验结果表明,改进后的算法明显提高了收敛速度,同时寻优能力更强。
关 键 词:蚁群算法 路径规划 局部分块优化策略 增强因子 反向学习
分 类 号:TP242]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...