期刊文章详细信息
高光谱成像的猕猴桃糖度无损检测方法 ( EI收录)
Study on Non-Destructive Detection Method of Kiwifruit Sugar Content Based on Hyperspectral Imaging Technology
文献类型:期刊文章
XU Li-jia;CHEN Ming;WANG Yu-chao;CHEN Xiao-yan;LEI Xiao-long(College of Mechanical and Electrical Engineering,Sichuan Agricultural University,Ya’an 625014,China;College of Information Engineering,Sichuan Agricultural University,Ya’an 625014,China;Lab of Agricultural Information Engineering,Sichuan Key Laboratory,Sichuan Agricultural University,Ya’an 625014,China)
机构地区:[1]四川农业大学机电学院,四川雅安625014 [2]四川农业大学信息工程学院,四川雅安625014 [3]四川农业大学农业信息工程四川省重点实验室,四川雅安625014
基 金:国家自然科学基金项目(31901413);国家重点研发计划项目(2018YFD0301204);四川省科技厅重点研发面上项目(20ZDYF2384);四川省教育厅自然科学重点项目(17ZB0333);市校合作项目(2018sxhz02)资助。
年 份:2021
卷 号:41
期 号:7
起止页码:2188-2195
语 种:中文
收录情况:AJ、BDHX、BDHX2020、CAS、CSCD、CSCD2021_2022、EI、IC、JST、PUBMED、RCCSE、SCIE、SCOPUS、WOS、ZGKJHX、核心刊
摘 要:猕猴桃糖度是重要的猕猴桃内部品质衡量指标。传统的糖度检测耗时且有损样品,有效无损检测猕猴桃糖度含量对于其品质分级、储藏销售具有重大意义。基于高光谱成像技术的常见果蔬品质无损检测方法多数是采用竞争性自适应重加权算法(CARS)、连续投影算法(SPA)、主成分分析(PCA)、迭代保留信息变量法(IRIV)等算法中的某个单一算法提取特征光谱变量,而这些算法单独使用易导致预测结果的稳定性不足。对此,开展了基于高光谱成像技术的猕猴桃糖度的无损检测方法研究。以四川省雅安市“红阳”猕猴桃为研究对象,依次对猕猴桃样本编号并采集其在400~1000 nm波长范围内的高光谱图像,计算感兴趣区域的平均光谱作为样本的有效光谱信息;分别采用多元散射校正(MSC)、标准正态变量变换(SNV)、直接正交信号校正(DOSC)等3种光谱数据预处理方法分析对预测模型精度的影响,对比结果显示DOSC的预处理效果最好;对预处理后的光谱分别采用一次降维(CARS,SPA,IRIV)、一次组合降维(CARS+SPA,CARS+IRIV)算法和二次组合降维算法((CARS+SPA)-SPA,(CARS+IRIV)-SPA))等7种算法提取特征光谱变量,并分别构建了预测猕猴桃糖度的3种模型,即支持向量回归机(SVR)、最小二乘支持向量机(LSSVM)和极限学习机(ELM)模型;最后对比了基于不同特征提取方法的3种模型的预测精度。研究结果表明:ELM模型具有最好的预测性能,而SVR模型的预测性能最差;(CARS+IRIV)-SPA所选特征光谱变量输入LSSVM、ELM模型,其获得的预测结果均优于其他算法所选特征光谱变量输入对应模型所得的预测结果,证明了(CARS+IRIV)-SPA算法在提高猕猴桃糖度含量检测精度方面的有效性。对比不同方法的预测结果可知,(CARS+IRIV)-SPA-ELM对猕猴桃糖度的预测性能最优,其相关系数R c=0.9451,R p=0.8390,均方根误差RMSEC=0.4503,RMSEP=0.5983,预测相对分析误�
关 键 词:猕猴桃 高光谱成像 糖度 特征光谱变量 极限学习机
分 类 号:O433.4]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...