登录    注册    忘记密码

期刊文章详细信息

XGBoost启发的双向特征选择算法    

Bidirectional Feature Selection Algorithm Inspired by XGBoost

  

文献类型:期刊文章

作  者:王丽[1] 王涛[1] 肖巍[1] 刘兆赓[2] 李占山[3]

WANG Li;WANG Tao;XIAO Wei;LIU Zhaogeng;LI Zhanshan(College of Computer Science and Engineering,Changchun University of Technology,Changchun 130012,China;College of Artificial Intelligence,Jilin University,Changchun 130012,China;College of Computer Science and Technology,Jilin University,Changchun 130012,China)

机构地区:[1]长春工业大学计算机科学与工程学院,长春130012 [2]吉林大学人工智能学院,长春130012 [3]吉林大学计算机科学与技术学院,长春130012

出  处:《吉林大学学报(理学版)》

基  金:国家自然科学基金面上项目(批准号:61472049);吉林省自然科学基金(批准号:20180101043JC)。

年  份:2021

卷  号:59

期  号:3

起止页码:627-634

语  种:中文

收录情况:AJ、BDHX、BDHX2020、CAS、JST、MR、RCCSE、ZGKJHX、ZMATH、核心刊

摘  要:针对特征选择过程中特征评价指标单一性的问题,基于集成学习中的极端梯度提升算法,提出一种新的特征选择算法.该算法首先应用极端梯度提升算法中构建集成树模型的指标作为特征选择的特征重要性度量指标,然后利用一种新的双向搜索策略,权衡了多种特征重要性对结果的影响,并优化了评价过程的效率.通过11个不同维度的标准数据集进行测试,实验结果表明,该算法能增加特征子集的多样性,加快特征选择的速度,并在中维和低维数据集上均具有较高的计算效率,且能处理高维数据集.

关 键 词:特征选择  极端梯度提升  双向搜索

分 类 号:TP18]

参考文献:

正在载入数据...

二级参考文献:

正在载入数据...

耦合文献:

正在载入数据...

引证文献:

正在载入数据...

二级引证文献:

正在载入数据...

同被引文献:

正在载入数据...

版权所有©重庆科技学院 重庆维普资讯有限公司 渝B2-20050021-7
 渝公网安备 50019002500408号 违法和不良信息举报中心