期刊文章详细信息
文献类型:期刊文章
PANG Longgang;ZHOU Kai;WANG Xinnian(Key Laboratory of Quark and Lepton Physics of Ministry of Education,Central China Normal University,WuHan 430079,China;Institute of Particle Physics(IOPP),Central China Normal University,WuHan 430079,China;Frankfurt Institute For Advanced Studies,Frankfurt 60438,Germany;Lawrence Berkeley National Laboratory,Berkeley 94706,USA)
机构地区:[1]华中师范大学夸克与轻子教育部重点实验室,武汉430079 [2]华中师范大学粒子物理研究所,武汉430079 [3]法兰克福高等研究中心,德国法兰克福60438 [4]劳伦斯伯克利国家实验室,美国加州伯克利94720
基 金:国家自然科学基金资助项目(11861131009)。
年 份:2020
卷 号:37
期 号:3
起止页码:720-726
语 种:中文
收录情况:BDHX、BDHX2017、CAS、CSCD、CSCD2019_2020、JST、ZGKJHX、核心刊
摘 要:深度学习是目前最好的模式识别工具,预期会在核物理领域帮助科学家从大量复杂数据中寻找与某些物理最相关的特征。本文综述了深度学习技术的分类,不同数据结构对应的最优神经网络架构,黑盒模型的可解释性与预测结果的不确定性。介绍了深度学习在核物质状态方程、核结构、原子核质量、衰变与裂变方面的应用,并展示如何训练神经网络预测原子核质量。结果发现使用实验数据训练的神经网络模型对未参与训练的实验数据拥有良好的预测能力。基于已有的实验数据外推,神经网络对丰中子的轻原子核质量预测结果与宏观微观液滴模型有较大偏离。此区域可能存在未被宏观微观液滴模型包含的新物理,需要进一步的实验数据验证。
关 键 词:机器学习 深度学习 核结构 核物质状态方程 核裂变
分 类 号:O152[数学类] O414.3]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...