期刊文章详细信息
基于新型空间注意力机制和迁移学习的垃圾图像分类算法 ( EI收录)
Classification algorithm of garbage images based on novel spatial attention mechanism and transfer learning
文献类型:期刊文章
GAO Ming;CHEN Yuhan;ZHANG Zehui;FENG Yu;FAN Weiguo(School of Management Science and Engineering,Dongbei University of Finance and Economics,Dalian 116025,China;Center for Post-doctoral Studies of Computer Science,Northeastern University,Shenyang 110819,China;School of Economics and Management,Southwest Jiaotong University,Chengdu 610031,China;School of Information Technology and Management,University of International Business and Economics,Beijjing 100029,China;Department of Business Analytics,University of Iowa,Iowa City,United States)
机构地区:[1]东北财经大学管理科学与工程学院,大连116025 [2]东北大学计算机科学与技术博士后流动站,沈阳110819 [3]西南交通大学经济管理学院,成都610031 [4]对外经济贸易大学信息学院,北京100029 [5]美国爱荷华大学商务分析系,美国爱荷华州
基 金:国家自然科学基金(71831003,71772033);辽宁省自然科学基金(重点科技创新基地联合基金,2020-KF-11-11);辽宁省教育厅科学研究项目(LN2019Q14)。
年 份:2021
卷 号:41
期 号:2
起止页码:498-512
语 种:中文
收录情况:BDHX、BDHX2020、CSCD、CSCD2021_2022、CSSCI、CSSCI2021_2022、EI、IC、JST、NSSD、RCCSE、RWSKHX、SCOPUS、ZGKJHX、核心刊
摘 要:随着我国各级政府大力推动垃圾强制分类,分类回收各环节中实现标准化、自动化的垃圾分类识别需要适合云端部署的高准确率、低延时要求的细粒度图像分类模型.本文发挥深度迁移学习的优势建立了一套端到端的迁移学习网络架构GANet (garbage neural network);针对垃圾分类中类别易混淆、背景干扰等挑战,提出一种新型的像素级空间注意力机制PSATT (pixel-level spatial attention).为克服类别多和样本不平衡挑战,提出使用标签平滑正则化损失函数;为改善收敛速度以及模型稳定性与泛化性,提出了阶梯形OneCycle学习率控制方法,并给出了结合Rectified Adam (RAdam)优化方法和权重平滑处理技术的组合使用策略.实验使用了"华为云人工智能大赛.垃圾分类挑战杯"提供的按照深圳市垃圾分类标准标注的训练数据,验证了GANet在垃圾分类问题中的显著效果,获得了全国二等奖(第2名);同时,提出的PSATT机制优于对比方法,且在不同主干网络架构上均得到了提升,具有良好的通用性.本文提出的GANet架构、PSATT机制和训练策略不仅具有重要的工程参考价值,也具有较好的学术价值.
关 键 词:注意力机制 迁移学习 垃圾分类 细粒度图像分类
分 类 号:TP391]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...