登录    注册    忘记密码

期刊文章详细信息

融合粒子群与改进蚁群算法的AUV路径规划算法    

AUV Path Planning Based on Particle Swarm Optimization and Improved Ant Colony Optimization

  

文献类型:期刊文章

作  者:朱佳莹[1] 高茂庭[1]

ZHU Jiaying;GAO Maoting(College of Information Engineering,Shanghai Maritime University,Shanghai 201306,China)

机构地区:[1]上海海事大学信息工程学院,上海201306

出  处:《计算机工程与应用》

基  金:国家自然科学基金(61703267)。

年  份:2021

卷  号:57

期  号:6

起止页码:267-273

语  种:中文

收录情况:AJ、BDHX、BDHX2020、CSCD、CSCD_E2021_2022、IC、JST、RCCSE、ZGKJHX、核心刊

摘  要:针对传统蚁群算法在处理自主式水下机器人AUV(Autonomous Underwater Vehicle)三维路径规划问题时存在初期寻径能力弱、算法收敛速度慢等问题,提出一种融合粒子群与改进蚁群算法的AUV路径规划算法PSOACO(Particle Swarm Optimization-improved Ant Colony Optimization)。基于空间分层思想建立三维栅格模型实现水下环境建模;综合考虑路径长度、崎岖性、危险性等因素建立路径评价模型;先使用粒子群算法预搜索路径来优化蚁群算法的初始信息素;再对蚁群算法改进状态转移规则、信息素更新方式并加入奖惩机制实现全局路径规划。实验表明,算法能有效提高初期寻径能力和全局搜索能力,减少收敛迭代次数并缩短搜索使用时间。

关 键 词:改进蚁群算法 粒子群算法  三维栅格模型  自主式水下机器人 三维路径规划

分 类 号:TP242]

参考文献:

正在载入数据...

二级参考文献:

正在载入数据...

耦合文献:

正在载入数据...

引证文献:

正在载入数据...

二级引证文献:

正在载入数据...

同被引文献:

正在载入数据...

版权所有©重庆科技学院 重庆维普资讯有限公司 渝B2-20050021-7
 渝公网安备 50019002500408号 违法和不良信息举报中心