期刊文章详细信息
文献类型:期刊文章
MA Xianghua;ZHANG Qian(School of Electrical and Electronic Engineering,Shanghai Institute of Technology,Shanghai 201418,China)
机构地区:[1]上海应用技术大学电气与电子工程学院,上海201418
基 金:国家04科技重大专项(2019ZX04026001);上海市自然科学基金(19ZR1455200)。
年 份:2021
卷 号:57
期 号:5
起止页码:210-215
语 种:中文
收录情况:AJ、BDHX、BDHX2020、CSCD、CSCD_E2021_2022、IC、JST、RCCSE、ZGKJHX、核心刊
摘 要:基于蚁群算法在路径规划过程中出现收敛速度慢、易陷入局部最优,且在复杂环境下的寻优能力弱等缺陷,提出了一种适用于机器人路径规划的改进蚁群算法。在预规划路径基础上建立初始信息素矩阵,避免算法前期盲目搜索,提高搜索速度;将改进蚁群算法和A*算法进行有机融合,进一步提高蚁群算法搜索方向性和收敛速度。制定信息素更新规则时引入拐点评价函数,提高搜索路径的光滑性,提高机器人安全性和降低能耗;提出回退策略有效减少蚂蚁死亡数量,提高路径规划方法的鲁棒性。仿真实验表明,在相同的环境下,改进的蚁群算法在机器人路径规划中搜索效率和收敛速度明显优于其他算法。
关 键 词:蚁群算法 路径规划 启发函数 拐点评价函数
分 类 号:TP242]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...